import streamlit as st import transformers import torch import json import os from transformers import AutoTokenizer, TextStreamer , pipeline model_id = "WizardLM/WizardMath-7B-V1.1" # Configuration runtimeFlag = "cuda:0" #Run on GPU (you can't run GPTQ on cpu) cache_dir = None # by default, don't set a cache directory. This is automatically updated if you connect Google Drive. scaling_factor = 1.0 # allows for a max sequence length of 16384*6 = 98304! Unfortunately, requires Colab Pro and a V100 or A100 to have sufficient RAM. from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", offload_folder="offload", pad_token_id=tokenizer.eos_token_id, offload_state_dict = True, torch_dtype=torch.float16, # rope_scaling = {"type": "dynamic", "factor": scaling_factor} ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) question = st.text_area("Enter questoin") if text: out = pipe(question)[0]['generated_text'] st.write(out)