Create training.py
Browse files- training.py +123 -0
training.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#This file was our attempt at training the model, which ultimately failed.
|
2 |
+
|
3 |
+
!pip install datasets peft transformers
|
4 |
+
from google.colab import userdata
|
5 |
+
my_secret_key = userdata.get('Cli2')
|
6 |
+
from huggingface_hub import login
|
7 |
+
login(my_secret_key)
|
8 |
+
|
9 |
+
# Name for finetuned model and folder.
|
10 |
+
model_output = "./BudgetAdvisor"
|
11 |
+
|
12 |
+
# Dataset loading and manipulation.
|
13 |
+
from datasets import load_dataset
|
14 |
+
dataset = load_dataset("gbharti/finance-alpaca") # features: ['text', 'instruction', 'input', 'output']
|
15 |
+
# Remove empty columns from dataset.
|
16 |
+
dataset = dataset.remove_columns(["text", "input"])
|
17 |
+
# Splits dataset to test and train sets, 90 % for train and 10 % for test.
|
18 |
+
dataset = dataset["train"].train_test_split(test_size=0.1)
|
19 |
+
train_dataset = dataset["train"]
|
20 |
+
eval_dataset = dataset["test"]
|
21 |
+
|
22 |
+
#Tokenizer and model settings.
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
from transformers import Trainer, TrainingArguments, AutoModelForCausalLM
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B", use_fast=True)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
27 |
+
|
28 |
+
# Make arrays of token the same size.
|
29 |
+
if tokenizer.pad_token is None:
|
30 |
+
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
31 |
+
model.resize_token_embeddings(len(tokenizer))
|
32 |
+
|
33 |
+
# For memory efficiency.
|
34 |
+
model.gradient_checkpointing_enable()
|
35 |
+
|
36 |
+
# Parameter-Efficient Fine-Tuning
|
37 |
+
from peft import LoraConfig, get_peft_model
|
38 |
+
# Define a PEFT configuration for LoRA
|
39 |
+
lora_config = LoraConfig(
|
40 |
+
r=8, # Reduced rank for faster training
|
41 |
+
lora_alpha=16,
|
42 |
+
target_modules=["q_proj", "v_proj"],
|
43 |
+
lora_dropout=0.05,
|
44 |
+
bias="none",
|
45 |
+
task_type="CAUSAL_LM"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Check if cuda is available.
|
49 |
+
import torch
|
50 |
+
model = get_peft_model(model, lora_config)
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
model.to(device)
|
53 |
+
|
54 |
+
# Preprocessing function
|
55 |
+
def preprocess_data(examples):
|
56 |
+
# Combine instruction and input as the prompt
|
57 |
+
inputs = [f"Instruction: {instr}\nInput: {inp}\n" for instr, inp in zip(examples['instruction'], examples['output'])]
|
58 |
+
targets = [output for output in examples['output']]
|
59 |
+
return {'input_text': inputs, 'target_text': targets}
|
60 |
+
|
61 |
+
train_dataset = train_dataset.map(preprocess_data, batched=True)
|
62 |
+
eval_dataset = eval_dataset.map(preprocess_data, batched=True)
|
63 |
+
|
64 |
+
# Tokenization function
|
65 |
+
def tokenize_data(examples):
|
66 |
+
model_inputs = tokenizer(
|
67 |
+
examples['input_text'],
|
68 |
+
max_length=128, # Reduced max_length for faster processing
|
69 |
+
truncation=True,
|
70 |
+
padding="max_length"
|
71 |
+
)
|
72 |
+
labels = tokenizer(
|
73 |
+
examples['target_text'],
|
74 |
+
max_length=128,
|
75 |
+
truncation=True,
|
76 |
+
padding="max_length"
|
77 |
+
)["input_ids"]
|
78 |
+
model_inputs["labels"] = labels
|
79 |
+
return model_inputs
|
80 |
+
|
81 |
+
# Tokenize the datasets
|
82 |
+
train_dataset = train_dataset.map(tokenize_data, batched=True, remove_columns=train_dataset.column_names)
|
83 |
+
eval_dataset = eval_dataset.map(tokenize_data, batched=True, remove_columns=eval_dataset.column_names)
|
84 |
+
|
85 |
+
# Set the format for PyTorch tensors
|
86 |
+
train_dataset.set_format(type="torch")
|
87 |
+
eval_dataset.set_format(type="torch")
|
88 |
+
|
89 |
+
# Training arguments and trainer.
|
90 |
+
training_args = TrainingArguments(
|
91 |
+
output_dir=model_output, # "./BudgetAdvisor"
|
92 |
+
per_device_train_batch_size=8, # Increase if GPU memory allows
|
93 |
+
per_device_eval_batch_size=8,
|
94 |
+
evaluation_strategy="steps",
|
95 |
+
eval_steps=500,
|
96 |
+
save_steps=500,
|
97 |
+
num_train_epochs=3, # Increased epochs for better training
|
98 |
+
learning_rate=5e-5,
|
99 |
+
fp16=True, # Enable mixed precision for faster training
|
100 |
+
logging_steps=100,
|
101 |
+
save_total_limit=2,
|
102 |
+
load_best_model_at_end=True,
|
103 |
+
report_to="none", # Disable reporting to third-party services
|
104 |
+
)
|
105 |
+
|
106 |
+
trainer = Trainer(
|
107 |
+
model=model,
|
108 |
+
args=training_args,
|
109 |
+
train_dataset=train_dataset,
|
110 |
+
eval_dataset=eval_dataset,
|
111 |
+
tokenizer=tokenizer
|
112 |
+
)
|
113 |
+
|
114 |
+
# Message for testing.
|
115 |
+
print("Trainer is set up!")
|
116 |
+
|
117 |
+
# Trains the model and saves it.
|
118 |
+
trainer.train()
|
119 |
+
print("Model trained!")
|
120 |
+
trainer.save_model(model_output) # "./BudgetAdvisor"
|
121 |
+
tokenizer.save_pretrained(model_output)# "./BudgetAdvisor"
|
122 |
+
|
123 |
+
!zip -r BudgetAdvisor.zip ./BudgetAdvisor
|