Spaces:
Sleeping
Sleeping
Update chatbot.py
Browse files- chatbot.py +77 -123
chatbot.py
CHANGED
@@ -1,28 +1,25 @@
|
|
1 |
-
import warnings
|
2 |
-
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
3 |
import os
|
|
|
|
|
4 |
from groq import Groq
|
5 |
from langchain.memory import ConversationTokenBufferMemory
|
6 |
-
from langchain.memory import ConversationBufferMemory
|
7 |
from langchain_community.chat_models import ChatOpenAI
|
8 |
-
from langdetect import detect
|
9 |
-
from deep_translator import GoogleTranslator
|
10 |
from langchain_community.document_loaders.csv_loader import CSVLoader
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
-
import
|
13 |
-
|
14 |
|
15 |
class Comsatsbot:
|
16 |
def __init__(self, hf, llm, api_keys, chats_collection, paths, index_path='faiss_kb'):
|
17 |
self.llm = llm
|
18 |
self.api_keys = api_keys
|
19 |
self.client = None
|
20 |
-
self.models = [
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
self.chats_collection = chats_collection
|
27 |
self.index_path = index_path
|
28 |
self.hf = hf
|
@@ -42,19 +39,16 @@ class Comsatsbot:
|
|
42 |
def initialize_faiss_index(self):
|
43 |
if os.path.exists(self.index_path):
|
44 |
self.faiss_index = FAISS.load_local(self.index_path, self.hf, allow_dangerous_deserialization=True)
|
45 |
-
self.faiss_retriever = self.faiss_index.as_retriever(search_kwargs={"k": 5})
|
46 |
else:
|
47 |
documents = self.load_data(self.paths)
|
48 |
self.faiss_index = FAISS.from_documents(documents, self.hf)
|
49 |
self.faiss_index.save_local(self.index_path)
|
50 |
-
|
51 |
|
52 |
def retrieve_answer(self, query):
|
53 |
if self.faiss_retriever:
|
54 |
return self.faiss_retriever.invoke(query)
|
55 |
-
|
56 |
-
print("FAISS retriever is not initialized. Please create or load an index.")
|
57 |
-
return None
|
58 |
|
59 |
def create_chat_record(self, chat_id):
|
60 |
self.chats_collection.insert_one({
|
@@ -75,20 +69,14 @@ class Comsatsbot:
|
|
75 |
return chat_record.get('history', [])
|
76 |
|
77 |
def new_chat(self, chat_id):
|
78 |
-
# Check if chat ID already exists
|
79 |
if self.chats_collection.find_one({"_id": chat_id}):
|
80 |
-
raise KeyError(f"Chat ID {chat_id}
|
81 |
-
|
82 |
-
# Create a new chat record if it doesn't exist
|
83 |
self.create_chat_record(chat_id)
|
84 |
return "success"
|
85 |
|
86 |
def delete_chat(self, chat_id):
|
87 |
-
# Check if the chat ID exists
|
88 |
if not self.chats_collection.find_one({"_id": chat_id}):
|
89 |
raise KeyError(f"Chat ID {chat_id} does not exist.")
|
90 |
-
|
91 |
-
# Delete the chat if it exists
|
92 |
self.chats_collection.delete_one({"_id": chat_id})
|
93 |
return "success"
|
94 |
|
@@ -133,141 +121,107 @@ class Comsatsbot:
|
|
133 |
'''
|
134 |
while True:
|
135 |
for api_key in self.api_keys:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
chat_completion = self.client.chat.completions.create(
|
141 |
messages=[
|
142 |
-
|
143 |
-
|
144 |
-
"content": prompt,
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"role": "user",
|
148 |
-
"content": f"Answer the following question : {question}",
|
149 |
-
},
|
150 |
],
|
151 |
model=model,
|
152 |
max_tokens=1024,
|
153 |
)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
continue
|
161 |
-
|
162 |
-
return "Sorry, unable to provide an answer at this time."
|
163 |
|
164 |
def detect_language(self, question):
|
165 |
-
|
166 |
-
|
167 |
-
for
|
168 |
-
|
169 |
-
|
170 |
-
for model in self.models:
|
171 |
-
try:
|
172 |
-
chat_completion = self.client.chat.completions.create(
|
173 |
messages=[
|
174 |
{
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
{
|
186 |
-
"role": "user",
|
187 |
-
"content": f"detect the language for the following Question: {question}",
|
188 |
-
},
|
189 |
],
|
190 |
model=model,
|
191 |
-
max_tokens=
|
192 |
response_format={"type": "json_object"},
|
193 |
)
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
continue
|
202 |
-
def translate_urdu(self, text):
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
chat_completion = self.client.chat.completions.create(
|
211 |
messages=[
|
212 |
{
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
{
|
224 |
-
"role": "user",
|
225 |
-
"content": f"detect the language for the following Question: {text}",
|
226 |
-
},
|
227 |
],
|
228 |
model=model,
|
229 |
max_tokens=512,
|
230 |
response_format={"type": "json_object"},
|
231 |
)
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
continue
|
240 |
-
|
241 |
|
242 |
def response(self, question, chat_id):
|
243 |
chat_history = self.load_chat(chat_id)
|
244 |
|
245 |
-
# Load the previous conversation into memory
|
246 |
for entry in chat_history:
|
247 |
self.memory.save_context({"input": entry["question"]}, {"output": entry["answer"]})
|
248 |
|
249 |
language = self.detect_language(question)
|
|
|
250 |
if language == 'urdu':
|
251 |
question_translation = GoogleTranslator(source='ur', target='en').translate(question)
|
252 |
context = self.faiss_retriever.invoke(question_translation)
|
253 |
else:
|
254 |
context = self.faiss_retriever.invoke(question)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
answer = self.generate_response(question, self.memory.load_memory_variables({})['history'], all_content)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
if language == 'urdu':
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
self.update_chat(chat_id, question, answer)
|
270 |
-
return answer
|
271 |
|
272 |
|
273 |
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
+
import json
|
4 |
from groq import Groq
|
5 |
from langchain.memory import ConversationTokenBufferMemory
|
|
|
6 |
from langchain_community.chat_models import ChatOpenAI
|
|
|
|
|
7 |
from langchain_community.document_loaders.csv_loader import CSVLoader
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
+
from deep_translator import GoogleTranslator
|
10 |
+
|
11 |
|
12 |
class Comsatsbot:
|
13 |
def __init__(self, hf, llm, api_keys, chats_collection, paths, index_path='faiss_kb'):
|
14 |
self.llm = llm
|
15 |
self.api_keys = api_keys
|
16 |
self.client = None
|
17 |
+
self.models = [
|
18 |
+
"llama3-groq-70b-8192-tool-use-preview",
|
19 |
+
"llama-3.1-70b-versatile",
|
20 |
+
"llama3-70b-8192"
|
21 |
+
]
|
22 |
+
self.memory = ConversationTokenBufferMemory(llm=self.llm, max_token_limit=3000)
|
23 |
self.chats_collection = chats_collection
|
24 |
self.index_path = index_path
|
25 |
self.hf = hf
|
|
|
39 |
def initialize_faiss_index(self):
|
40 |
if os.path.exists(self.index_path):
|
41 |
self.faiss_index = FAISS.load_local(self.index_path, self.hf, allow_dangerous_deserialization=True)
|
|
|
42 |
else:
|
43 |
documents = self.load_data(self.paths)
|
44 |
self.faiss_index = FAISS.from_documents(documents, self.hf)
|
45 |
self.faiss_index.save_local(self.index_path)
|
46 |
+
self.faiss_retriever = self.faiss_index.as_retriever(search_kwargs={"k": 5})
|
47 |
|
48 |
def retrieve_answer(self, query):
|
49 |
if self.faiss_retriever:
|
50 |
return self.faiss_retriever.invoke(query)
|
51 |
+
return None
|
|
|
|
|
52 |
|
53 |
def create_chat_record(self, chat_id):
|
54 |
self.chats_collection.insert_one({
|
|
|
69 |
return chat_record.get('history', [])
|
70 |
|
71 |
def new_chat(self, chat_id):
|
|
|
72 |
if self.chats_collection.find_one({"_id": chat_id}):
|
73 |
+
raise KeyError(f"Chat ID {chat_id} exists already.")
|
|
|
|
|
74 |
self.create_chat_record(chat_id)
|
75 |
return "success"
|
76 |
|
77 |
def delete_chat(self, chat_id):
|
|
|
78 |
if not self.chats_collection.find_one({"_id": chat_id}):
|
79 |
raise KeyError(f"Chat ID {chat_id} does not exist.")
|
|
|
|
|
80 |
self.chats_collection.delete_one({"_id": chat_id})
|
81 |
return "success"
|
82 |
|
|
|
121 |
'''
|
122 |
while True:
|
123 |
for api_key in self.api_keys:
|
124 |
+
self.client = Groq(api_key=api_key)
|
125 |
+
for model in self.models:
|
126 |
+
try:
|
127 |
+
chat_completion = self.client.chat.completions.create(
|
|
|
128 |
messages=[
|
129 |
+
{"role": "system", "content": prompt},
|
130 |
+
{"role": "user", "content": f"Answer the following question: {question}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
],
|
132 |
model=model,
|
133 |
max_tokens=1024,
|
134 |
)
|
135 |
+
return chat_completion.choices[0].message.content
|
136 |
+
except Exception:
|
137 |
+
time.sleep(2)
|
138 |
+
continue
|
139 |
+
return "Sorry, unable to provide an answer at this time."
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def detect_language(self, question):
|
142 |
+
for api_key in self.api_keys:
|
143 |
+
self.client = Groq(api_key=api_key)
|
144 |
+
for model in self.models:
|
145 |
+
try:
|
146 |
+
chat_completion = self.client.chat.completions.create(
|
|
|
|
|
|
|
147 |
messages=[
|
148 |
{
|
149 |
+
"role": "system",
|
150 |
+
"content": """
|
151 |
+
You are an expert agent and your task is to detect the language.
|
152 |
+
Return a JSON: {'detected_language': 'urdu' or 'english'}
|
153 |
+
"""
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"role": "user",
|
157 |
+
"content": f"Detect the language for: {question}"
|
158 |
+
}
|
|
|
|
|
|
|
|
|
159 |
],
|
160 |
model=model,
|
161 |
+
max_tokens=256,
|
162 |
response_format={"type": "json_object"},
|
163 |
)
|
164 |
+
response = json.loads(chat_completion.choices[0].message.content)
|
165 |
+
return response['detected_language'].lower()
|
166 |
+
except Exception:
|
167 |
+
time.sleep(2)
|
168 |
+
continue
|
169 |
+
return "english"
|
|
|
|
|
|
|
170 |
|
171 |
+
def translate_urdu(self, text):
|
172 |
+
for api_key in self.api_keys:
|
173 |
+
self.client = Groq(api_key=api_key)
|
174 |
+
for model in self.models:
|
175 |
+
try:
|
176 |
+
chat_completion = self.client.chat.completions.create(
|
|
|
177 |
messages=[
|
178 |
{
|
179 |
+
"role": "system",
|
180 |
+
"content": """
|
181 |
+
Translate the following text into proper Urdu. Return a JSON:
|
182 |
+
{'text': 'translated urdu text'}
|
183 |
+
"""
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"role": "user",
|
187 |
+
"content": f"Translate this: {text}"
|
188 |
+
}
|
|
|
|
|
|
|
|
|
189 |
],
|
190 |
model=model,
|
191 |
max_tokens=512,
|
192 |
response_format={"type": "json_object"},
|
193 |
)
|
194 |
+
response = json.loads(chat_completion.choices[0].message.content)
|
195 |
+
return response['text']
|
196 |
+
except Exception:
|
197 |
+
time.sleep(2)
|
198 |
+
continue
|
199 |
+
return text
|
|
|
|
|
|
|
200 |
|
201 |
def response(self, question, chat_id):
|
202 |
chat_history = self.load_chat(chat_id)
|
203 |
|
|
|
204 |
for entry in chat_history:
|
205 |
self.memory.save_context({"input": entry["question"]}, {"output": entry["answer"]})
|
206 |
|
207 |
language = self.detect_language(question)
|
208 |
+
|
209 |
if language == 'urdu':
|
210 |
question_translation = GoogleTranslator(source='ur', target='en').translate(question)
|
211 |
context = self.faiss_retriever.invoke(question_translation)
|
212 |
else:
|
213 |
context = self.faiss_retriever.invoke(question)
|
214 |
|
215 |
+
combined_context = '\n'.join([doc.page_content for doc in context])
|
216 |
+
answer = self.generate_response(question, self.memory.load_memory_variables({})['history'], combined_context)
|
217 |
+
|
218 |
+
self.update_chat(chat_id, question, answer)
|
|
|
219 |
|
|
|
|
|
220 |
if language == 'urdu':
|
221 |
+
return self.translate_urdu(answer)
|
222 |
+
return answer
|
223 |
+
|
224 |
+
|
|
|
|
|
225 |
|
226 |
|
227 |
|