Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from Gradio_UI import GradioUI | |
# Custom Tool to fetch datasets related to body parts or imaging types | |
def my_custom_tool(arg1: str, arg2: int) -> str: | |
""" | |
Search and retrieve publicly available medical datasets from Hugging Face based on any medical-related keyword. | |
Args: | |
arg1: A keyword related to medical data (e.g., 'cancer', 'diabetes', 'CT scan', 'radiology', 'dermoscopy'). | |
arg2: The maximum number of datasets to retrieve. | |
Returns: | |
A list of dataset names matching the search query, or a message stating that no datasets were found | |
or that the keyword is not medically relevant. | |
""" | |
try: | |
keyword = arg1.strip().lower() | |
limit = int(arg2) | |
# ✅ Define a basic list of medically relevant terms | |
medical_terms = [ | |
"skin", "brain", "cancer", "tumor", "mri", "ct", "xray", "ultrasound", | |
"diabetes", "pneumonia", "covid", "lesion", "radiology", "pathology", | |
"lung", "chest", "abdomen", "spine", "bone", "stroke", "eczema", "melanoma", | |
"eye", "retina", "dermoscopy", "cardiology", "infection", "biopsy", "tooth", | |
"toothache", "dental", "ear", "wrist", "hand", "leg", "arm", "heart" | |
] | |
# ✅ Check if the keyword looks medically relevant | |
if not any(term in keyword for term in medical_terms): | |
return f"'{arg1}' does not appear to be a medical term." | |
# ✅ Proceed to fetch datasets | |
response = requests.get( | |
f"https://huggingface.co/api/datasets?search={keyword}&limit={limit}" | |
) | |
response.raise_for_status() | |
datasets = response.json() | |
if not datasets: | |
return f"No medical datasets found for '{arg1}'." | |
results = [f"- {ds.get('id', 'Unknown')}" for ds in datasets[:limit]] | |
return f"Medical datasets related to '{arg1}':\n" + "\n".join(results) | |
except Exception as e: | |
return f"Error searching medical datasets for '{arg1}': {str(e)}" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
""" | |
A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
Returns: | |
A string showing the current local time in the specified timezone. | |
""" | |
try: | |
tz = pytz.timezone(timezone) | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# Model setup | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', # this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Load tool from hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
# Load prompt templates | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
# Create the agent | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, get_current_time_in_timezone, my_custom_tool], # add your tools here | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
# Launch the UI | |
GradioUI(agent).launch() | |