Update app.py
Browse files
app.py
CHANGED
@@ -32,107 +32,70 @@ from torchvision.transforms.functional import to_pil_image
|
|
32 |
|
33 |
app = Flask(__name__)
|
34 |
|
|
|
35 |
base_path = 'yisol/IDM-VTON'
|
36 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
37 |
|
|
|
38 |
unet = UNet2DConditionModel.from_pretrained(
|
39 |
base_path,
|
40 |
subfolder="unet",
|
41 |
torch_dtype=torch.float16,
|
42 |
force_download=False
|
43 |
)
|
44 |
-
unet.requires_grad_(False)
|
45 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
46 |
base_path,
|
47 |
subfolder="tokenizer",
|
48 |
-
revision=None,
|
49 |
use_fast=False,
|
50 |
force_download=False
|
51 |
)
|
52 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
53 |
base_path,
|
54 |
subfolder="tokenizer_2",
|
55 |
-
revision=None,
|
56 |
use_fast=False,
|
57 |
force_download=False
|
58 |
)
|
59 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
force_download=False
|
66 |
-
)
|
67 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
68 |
-
base_path,
|
69 |
-
subfolder="text_encoder_2",
|
70 |
-
torch_dtype=torch.float16,
|
71 |
-
force_download=False
|
72 |
-
)
|
73 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
74 |
-
base_path,
|
75 |
-
subfolder="image_encoder",
|
76 |
-
torch_dtype=torch.float16,
|
77 |
-
force_download=False
|
78 |
-
)
|
79 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
80 |
-
subfolder="vae",
|
81 |
-
torch_dtype=torch.float16,
|
82 |
-
force_download=False
|
83 |
-
)
|
84 |
-
|
85 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
86 |
-
base_path,
|
87 |
-
subfolder="unet_encoder",
|
88 |
-
torch_dtype=torch.float16,
|
89 |
-
force_download=False
|
90 |
-
)
|
91 |
|
92 |
parsing_model = Parsing(0)
|
93 |
openpose_model = OpenPose(0)
|
94 |
|
95 |
-
|
96 |
-
image_encoder.requires_grad_(False)
|
97 |
-
vae.requires_grad_(False)
|
98 |
-
unet.requires_grad_(False)
|
99 |
-
text_encoder_one.requires_grad_(False)
|
100 |
-
text_encoder_two.requires_grad_(False)
|
101 |
-
tensor_transfrom = transforms.Compose(
|
102 |
-
[
|
103 |
-
transforms.ToTensor(),
|
104 |
-
transforms.Normalize([0.5], [0.5]),
|
105 |
-
]
|
106 |
-
)
|
107 |
-
|
108 |
pipe = TryonPipeline.from_pretrained(
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
)
|
122 |
pipe.unet_encoder = UNet_Encoder
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
def pil_to_binary_mask(pil_image, threshold=0):
|
125 |
np_image = np.array(pil_image)
|
126 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
127 |
binary_mask = np.array(grayscale_image) > threshold
|
128 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
mask = (mask * 255).astype(np.uint8)
|
134 |
-
output_mask = Image.fromarray(mask)
|
135 |
-
return output_mask
|
136 |
|
137 |
def get_image_from_url(url):
|
138 |
try:
|
@@ -157,8 +120,7 @@ def encode_image_to_base64(img):
|
|
157 |
try:
|
158 |
buffered = BytesIO()
|
159 |
img.save(buffered, format="PNG")
|
160 |
-
|
161 |
-
return img_str
|
162 |
except Exception as e:
|
163 |
logging.error(f"Error encoding image: {e}")
|
164 |
raise
|
@@ -283,7 +245,6 @@ def tryon_v2():
|
|
283 |
human_image_data = data['human_image']
|
284 |
garment_image_data = data['garment_image']
|
285 |
|
286 |
-
# Process images (base64 ou URL)
|
287 |
human_image = process_image(human_image_data)
|
288 |
garment_image = process_image(garment_image_data)
|
289 |
|
@@ -294,18 +255,18 @@ def tryon_v2():
|
|
294 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
295 |
categorie = data.get('categorie', 'upper_body')
|
296 |
|
297 |
-
# Vérifie si 'mask_image' est présent dans les données
|
298 |
mask_image = None
|
299 |
if 'mask_image' in data:
|
300 |
mask_image_data = data['mask_image']
|
301 |
mask_image = process_image(mask_image_data)
|
302 |
-
|
303 |
human_dict = {
|
304 |
'background': human_image,
|
305 |
'layers': [mask_image] if not use_auto_mask else None,
|
306 |
'composite': None
|
307 |
}
|
308 |
-
|
|
|
309 |
return jsonify({
|
310 |
'image_id': save_image(output_image)
|
311 |
})
|
|
|
32 |
|
33 |
app = Flask(__name__)
|
34 |
|
35 |
+
# Chemins de base pour les modèles
|
36 |
base_path = 'yisol/IDM-VTON'
|
|
|
37 |
|
38 |
+
# Chargement des modèles
|
39 |
unet = UNet2DConditionModel.from_pretrained(
|
40 |
base_path,
|
41 |
subfolder="unet",
|
42 |
torch_dtype=torch.float16,
|
43 |
force_download=False
|
44 |
)
|
|
|
45 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
46 |
base_path,
|
47 |
subfolder="tokenizer",
|
|
|
48 |
use_fast=False,
|
49 |
force_download=False
|
50 |
)
|
51 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
52 |
base_path,
|
53 |
subfolder="tokenizer_2",
|
|
|
54 |
use_fast=False,
|
55 |
force_download=False
|
56 |
)
|
57 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
58 |
+
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
|
59 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
|
60 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
|
61 |
+
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
62 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
parsing_model = Parsing(0)
|
65 |
openpose_model = OpenPose(0)
|
66 |
|
67 |
+
# Préparation du pipeline Tryon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
pipe = TryonPipeline.from_pretrained(
|
69 |
+
base_path,
|
70 |
+
unet=unet,
|
71 |
+
vae=vae,
|
72 |
+
feature_extractor=CLIPImageProcessor(),
|
73 |
+
text_encoder=text_encoder_one,
|
74 |
+
text_encoder_2=text_encoder_two,
|
75 |
+
tokenizer=tokenizer_one,
|
76 |
+
tokenizer_2=tokenizer_two,
|
77 |
+
scheduler=noise_scheduler,
|
78 |
+
image_encoder=image_encoder,
|
79 |
+
torch_dtype=torch.float16,
|
80 |
+
force_download=False
|
81 |
)
|
82 |
pipe.unet_encoder = UNet_Encoder
|
83 |
|
84 |
+
# Utilisation des transformations d'images
|
85 |
+
tensor_transfrom = transforms.Compose([
|
86 |
+
transforms.ToTensor(),
|
87 |
+
transforms.Normalize([0.5], [0.5]),
|
88 |
+
])
|
89 |
+
|
90 |
def pil_to_binary_mask(pil_image, threshold=0):
|
91 |
np_image = np.array(pil_image)
|
92 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
93 |
binary_mask = np.array(grayscale_image) > threshold
|
94 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
95 |
+
mask[binary_mask] = 1
|
96 |
+
return Image.fromarray((mask * 255).astype(np.uint8))
|
97 |
+
|
98 |
+
|
|
|
|
|
|
|
99 |
|
100 |
def get_image_from_url(url):
|
101 |
try:
|
|
|
120 |
try:
|
121 |
buffered = BytesIO()
|
122 |
img.save(buffered, format="PNG")
|
123 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
124 |
except Exception as e:
|
125 |
logging.error(f"Error encoding image: {e}")
|
126 |
raise
|
|
|
245 |
human_image_data = data['human_image']
|
246 |
garment_image_data = data['garment_image']
|
247 |
|
|
|
248 |
human_image = process_image(human_image_data)
|
249 |
garment_image = process_image(garment_image_data)
|
250 |
|
|
|
255 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
256 |
categorie = data.get('categorie', 'upper_body')
|
257 |
|
|
|
258 |
mask_image = None
|
259 |
if 'mask_image' in data:
|
260 |
mask_image_data = data['mask_image']
|
261 |
mask_image = process_image(mask_image_data)
|
262 |
+
|
263 |
human_dict = {
|
264 |
'background': human_image,
|
265 |
'layers': [mask_image] if not use_auto_mask else None,
|
266 |
'composite': None
|
267 |
}
|
268 |
+
|
269 |
+
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
|
270 |
return jsonify({
|
271 |
'image_id': save_image(output_image)
|
272 |
})
|