'''NEURAL STYLE TRANSFER ''' import numpy as np import tensorflow as tf import tensorflow_hub as hub import gradio as gr from PIL import Image np.set_printoptions(suppress=True) model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') def tensor_to_image(tensor): tensor *= 255 tensor = np.array(tensor, dtype=np.uint8) if tensor.ndim > 3: tensor = tensor[0] return Image.fromarray(tensor) def transform_my_model(content_image, style_image): content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.0 style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.0 stylized_image = model(tf.constant(content_image), tf.constant(style_image))[0] return tensor_to_image(stylized_image) demo = gr.Interface( fn=transform_my_model, inputs=[gr.Image(label="Content Image"), gr.Image(label="Style Image")], outputs=gr.Image(label="Result"), title="Style Transfer", examples=[ ["Content_Images/contnt12.jpg", "VG516.jpg"], ["Content_Images/contnt2.jpg", "Content_Images/styl9.jpg"], ["Content_Images/contnt.jpg", "Content_Images/styl22.jpg"] ], article="References-\n\nExploring the structure of a real-time, arbitrary neural artistic stylization network. Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin." ) demo.launch(share=True)