# -*- coding: utf-8 -*- # Copyright (c) XiMing Xing. All rights reserved. # Author: XiMing Xing # Description: def accuracy(output, target, topk=(1,)): """ Computes the accuracy over the k top predictions for the specified values of k. Args output: logits or probs (num of batch, num of classes) target: (num of batch, 1) or (num of batch, ) topk: list of returned k refer: https://github.com/pytorch/examples/blob/master/imagenet/main.py """ maxK = max(topk) # get k in top-k batch_size = target.size(0) _, pred = output.topk(k=maxK, dim=1, largest=True, sorted=True) # pred: [num of batch, k] pred = pred.t() # pred: [k, num of batch] # [1, num of batch] -> [k, num_of_batch] : bool correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res # np.shape(res): [k, 1]