r"""General purpose functions""" from typing import Tuple, Union, Optional import torch from ..utils import _parse_version def ifftshift(x: torch.Tensor) -> torch.Tensor: r""" Similar to np.fft.ifftshift but applies to PyTorch Tensors""" shift = [-(ax // 2) for ax in x.size()] return torch.roll(x, shift, tuple(range(len(shift)))) def get_meshgrid(size: Tuple[int, int], device: Optional[str] = None, dtype: Optional[type] = None) -> torch.Tensor: r"""Return coordinate grid matrices centered at zero point. Args: size: Shape of meshgrid to create device: device to use for creation dtype: dtype to use for creation Returns: Meshgrid of size on device with dtype values. """ if size[0] % 2: # Odd x = torch.arange(-(size[0] - 1) / 2, size[0] / 2, device=device, dtype=dtype) / (size[0] - 1) else: # Even x = torch.arange(- size[0] / 2, size[0] / 2, device=device, dtype=dtype) / size[0] if size[1] % 2: # Odd y = torch.arange(-(size[1] - 1) / 2, size[1] / 2, device=device, dtype=dtype) / (size[1] - 1) else: # Even y = torch.arange(- size[1] / 2, size[1] / 2, device=device, dtype=dtype) / size[1] # Use indexing param depending on torch version recommended_torch_version = _parse_version("1.10.0") torch_version = _parse_version(torch.__version__) if len(torch_version) > 0 and torch_version >= recommended_torch_version: return torch.meshgrid(x, y, indexing='ij') return torch.meshgrid(x, y) def similarity_map(map_x: torch.Tensor, map_y: torch.Tensor, constant: float, alpha: float = 0.0) -> torch.Tensor: r""" Compute similarity_map between two tensors using Dice-like equation. Args: map_x: Tensor with map to be compared map_y: Tensor with map to be compared constant: Used for numerical stability alpha: Masking coefficient. Subtracts - `alpha` * map_x * map_y from denominator and nominator """ return (2.0 * map_x * map_y - alpha * map_x * map_y + constant) / \ (map_x ** 2 + map_y ** 2 - alpha * map_x * map_y + constant) def gradient_map(x: torch.Tensor, kernels: torch.Tensor) -> torch.Tensor: r""" Compute gradient map for a given tensor and stack of kernels. Args: x: Tensor with shape (N, C, H, W). kernels: Stack of tensors for gradient computation with shape (k_N, k_H, k_W) Returns: Gradients of x per-channel with shape (N, C, H, W) """ padding = kernels.size(-1) // 2 grads = torch.nn.functional.conv2d(x, kernels, padding=padding) return torch.sqrt(torch.sum(grads ** 2, dim=-3, keepdim=True)) def pow_for_complex(base: torch.Tensor, exp: Union[int, float]) -> torch.Tensor: r""" Takes the power of each element in a 4D tensor with negative values or 5D tensor with complex values. Complex numbers are represented by modulus and argument: r * \exp(i * \phi). It will likely to be redundant with introduction of torch.ComplexTensor. Args: base: Tensor with shape (N, C, H, W) or (N, C, H, W, 2). exp: Exponent Returns: Complex tensor with shape (N, C, H, W, 2). """ if base.dim() == 4: x_complex_r = base.abs() x_complex_phi = torch.atan2(torch.zeros_like(base), base) elif base.dim() == 5 and base.size(-1) == 2: x_complex_r = base.pow(2).sum(dim=-1).sqrt() x_complex_phi = torch.atan2(base[..., 1], base[..., 0]) else: raise ValueError(f'Expected real or complex tensor, got {base.size()}') x_complex_pow_r = x_complex_r ** exp x_complex_pow_phi = x_complex_phi * exp x_real_pow = x_complex_pow_r * torch.cos(x_complex_pow_phi) x_imag_pow = x_complex_pow_r * torch.sin(x_complex_pow_phi) return torch.stack((x_real_pow, x_imag_pow), dim=-1) def crop_patches(x: torch.Tensor, size=64, stride=32) -> torch.Tensor: r"""Crop tensor with images into small patches Args: x: Tensor with shape (N, C, H, W), expected to be images-like entities size: Size of a square patch stride: Step between patches """ assert (x.shape[2] >= size) and (x.shape[3] >= size), \ f"Images must be bigger than patch size. Got ({x.shape[2], x.shape[3]}) and ({size}, {size})" channels = x.shape[1] patches = x.unfold(1, channels, channels).unfold(2, size, stride).unfold(3, size, stride) patches = patches.reshape(-1, channels, size, size) return patches