Spaces:
Running
Running
r"""Colour space conversion functions""" | |
from typing import Union, Dict | |
import torch | |
def rgb2lmn(x: torch.Tensor) -> torch.Tensor: | |
r"""Convert a batch of RGB images to a batch of LMN images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). RGB colour space. | |
Returns: | |
Batch of images with shape (N, 3, H, W). LMN colour space. | |
""" | |
weights_rgb_to_lmn = torch.tensor([[0.06, 0.63, 0.27], | |
[0.30, 0.04, -0.35], | |
[0.34, -0.6, 0.17]], dtype=x.dtype, device=x.device).t() | |
x_lmn = torch.matmul(x.permute(0, 2, 3, 1), weights_rgb_to_lmn).permute(0, 3, 1, 2) | |
return x_lmn | |
def rgb2xyz(x: torch.Tensor) -> torch.Tensor: | |
r"""Convert a batch of RGB images to a batch of XYZ images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). RGB colour space. | |
Returns: | |
Batch of images with shape (N, 3, H, W). XYZ colour space. | |
""" | |
mask_below = (x <= 0.04045).type(x.dtype) | |
mask_above = (x > 0.04045).type(x.dtype) | |
tmp = x / 12.92 * mask_below + torch.pow((x + 0.055) / 1.055, 2.4) * mask_above | |
weights_rgb_to_xyz = torch.tensor([[0.4124564, 0.3575761, 0.1804375], | |
[0.2126729, 0.7151522, 0.0721750], | |
[0.0193339, 0.1191920, 0.9503041]], dtype=x.dtype, device=x.device) | |
x_xyz = torch.matmul(tmp.permute(0, 2, 3, 1), weights_rgb_to_xyz.t()).permute(0, 3, 1, 2) | |
return x_xyz | |
def xyz2lab(x: torch.Tensor, illuminant: str = 'D50', observer: str = '2') -> torch.Tensor: | |
r"""Convert a batch of XYZ images to a batch of LAB images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). XYZ colour space. | |
illuminant: {βAβ, βD50β, βD55β, βD65β, βD75β, βEβ}, optional. The name of the illuminant. | |
observer: {β2β, β10β}, optional. The aperture angle of the observer. | |
Returns: | |
Batch of images with shape (N, 3, H, W). LAB colour space. | |
""" | |
epsilon = 0.008856 | |
kappa = 903.3 | |
illuminants: Dict[str, Dict] = \ | |
{"A": {'2': (1.098466069456375, 1, 0.3558228003436005), | |
'10': (1.111420406956693, 1, 0.3519978321919493)}, | |
"D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), | |
'10': (0.9672062750333777, 1, 0.8142801513128616)}, | |
"D55": {'2': (0.956797052643698, 1, 0.9214805860173273), | |
'10': (0.9579665682254781, 1, 0.9092525159847462)}, | |
"D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` | |
'10': (0.94809667673716, 1, 1.0730513595166162)}, | |
"D75": {'2': (0.9497220898840717, 1, 1.226393520724154), | |
'10': (0.9441713925645873, 1, 1.2064272211720228)}, | |
"E": {'2': (1.0, 1.0, 1.0), | |
'10': (1.0, 1.0, 1.0)}} | |
illuminants_to_use = torch.tensor(illuminants[illuminant][observer], | |
dtype=x.dtype, device=x.device).view(1, 3, 1, 1) | |
tmp = x / illuminants_to_use | |
mask_below = (tmp <= epsilon).type(x.dtype) | |
mask_above = (tmp > epsilon).type(x.dtype) | |
tmp = torch.pow(tmp, 1. / 3.) * mask_above + (kappa * tmp + 16.) / 116. * mask_below | |
weights_xyz_to_lab = torch.tensor([[0, 116., 0], | |
[500., -500., 0], | |
[0, 200., -200.]], dtype=x.dtype, device=x.device) | |
bias_xyz_to_lab = torch.tensor([-16., 0., 0.], dtype=x.dtype, device=x.device).view(1, 3, 1, 1) | |
x_lab = torch.matmul(tmp.permute(0, 2, 3, 1), weights_xyz_to_lab.t()).permute(0, 3, 1, 2) + bias_xyz_to_lab | |
return x_lab | |
def rgb2lab(x: torch.Tensor, data_range: Union[int, float] = 255) -> torch.Tensor: | |
r"""Convert a batch of RGB images to a batch of LAB images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). RGB colour space. | |
data_range: dynamic range of the input image. | |
Returns: | |
Batch of images with shape (N, 3, H, W). LAB colour space. | |
""" | |
return xyz2lab(rgb2xyz(x / float(data_range))) | |
def rgb2yiq(x: torch.Tensor) -> torch.Tensor: | |
r"""Convert a batch of RGB images to a batch of YIQ images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). RGB colour space. | |
Returns: | |
Batch of images with shape (N, 3, H, W). YIQ colour space. | |
""" | |
yiq_weights = torch.tensor([ | |
[0.299, 0.587, 0.114], | |
[0.5959, -0.2746, -0.3213], | |
[0.2115, -0.5227, 0.3112]], dtype=x.dtype, device=x.device).t() | |
x_yiq = torch.matmul(x.permute(0, 2, 3, 1), yiq_weights).permute(0, 3, 1, 2) | |
return x_yiq | |
def rgb2lhm(x: torch.Tensor) -> torch.Tensor: | |
r"""Convert a batch of RGB images to a batch of LHM images | |
Args: | |
x: Batch of images with shape (N, 3, H, W). RGB colour space. | |
Returns: | |
Batch of images with shape (N, 3, H, W). LHM colour space. | |
Reference: | |
https://arxiv.org/pdf/1608.07433.pdf | |
""" | |
lhm_weights = torch.tensor([ | |
[0.2989, 0.587, 0.114], | |
[0.3, 0.04, -0.35], | |
[0.34, -0.6, 0.17]], dtype=x.dtype, device=x.device).t() | |
x_lhm = torch.matmul(x.permute(0, 2, 3, 1), lhm_weights).permute(0, 3, 1, 2) | |
return x_lhm | |