hjc-owo
init repo
966ae59
r"""Colour space conversion functions"""
from typing import Union, Dict
import torch
def rgb2lmn(x: torch.Tensor) -> torch.Tensor:
r"""Convert a batch of RGB images to a batch of LMN images
Args:
x: Batch of images with shape (N, 3, H, W). RGB colour space.
Returns:
Batch of images with shape (N, 3, H, W). LMN colour space.
"""
weights_rgb_to_lmn = torch.tensor([[0.06, 0.63, 0.27],
[0.30, 0.04, -0.35],
[0.34, -0.6, 0.17]], dtype=x.dtype, device=x.device).t()
x_lmn = torch.matmul(x.permute(0, 2, 3, 1), weights_rgb_to_lmn).permute(0, 3, 1, 2)
return x_lmn
def rgb2xyz(x: torch.Tensor) -> torch.Tensor:
r"""Convert a batch of RGB images to a batch of XYZ images
Args:
x: Batch of images with shape (N, 3, H, W). RGB colour space.
Returns:
Batch of images with shape (N, 3, H, W). XYZ colour space.
"""
mask_below = (x <= 0.04045).type(x.dtype)
mask_above = (x > 0.04045).type(x.dtype)
tmp = x / 12.92 * mask_below + torch.pow((x + 0.055) / 1.055, 2.4) * mask_above
weights_rgb_to_xyz = torch.tensor([[0.4124564, 0.3575761, 0.1804375],
[0.2126729, 0.7151522, 0.0721750],
[0.0193339, 0.1191920, 0.9503041]], dtype=x.dtype, device=x.device)
x_xyz = torch.matmul(tmp.permute(0, 2, 3, 1), weights_rgb_to_xyz.t()).permute(0, 3, 1, 2)
return x_xyz
def xyz2lab(x: torch.Tensor, illuminant: str = 'D50', observer: str = '2') -> torch.Tensor:
r"""Convert a batch of XYZ images to a batch of LAB images
Args:
x: Batch of images with shape (N, 3, H, W). XYZ colour space.
illuminant: {β€œA”, β€œD50”, β€œD55”, β€œD65”, β€œD75”, β€œE”}, optional. The name of the illuminant.
observer: {β€œ2”, β€œ10”}, optional. The aperture angle of the observer.
Returns:
Batch of images with shape (N, 3, H, W). LAB colour space.
"""
epsilon = 0.008856
kappa = 903.3
illuminants: Dict[str, Dict] = \
{"A": {'2': (1.098466069456375, 1, 0.3558228003436005),
'10': (1.111420406956693, 1, 0.3519978321919493)},
"D50": {'2': (0.9642119944211994, 1, 0.8251882845188288),
'10': (0.9672062750333777, 1, 0.8142801513128616)},
"D55": {'2': (0.956797052643698, 1, 0.9214805860173273),
'10': (0.9579665682254781, 1, 0.9092525159847462)},
"D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white`
'10': (0.94809667673716, 1, 1.0730513595166162)},
"D75": {'2': (0.9497220898840717, 1, 1.226393520724154),
'10': (0.9441713925645873, 1, 1.2064272211720228)},
"E": {'2': (1.0, 1.0, 1.0),
'10': (1.0, 1.0, 1.0)}}
illuminants_to_use = torch.tensor(illuminants[illuminant][observer],
dtype=x.dtype, device=x.device).view(1, 3, 1, 1)
tmp = x / illuminants_to_use
mask_below = (tmp <= epsilon).type(x.dtype)
mask_above = (tmp > epsilon).type(x.dtype)
tmp = torch.pow(tmp, 1. / 3.) * mask_above + (kappa * tmp + 16.) / 116. * mask_below
weights_xyz_to_lab = torch.tensor([[0, 116., 0],
[500., -500., 0],
[0, 200., -200.]], dtype=x.dtype, device=x.device)
bias_xyz_to_lab = torch.tensor([-16., 0., 0.], dtype=x.dtype, device=x.device).view(1, 3, 1, 1)
x_lab = torch.matmul(tmp.permute(0, 2, 3, 1), weights_xyz_to_lab.t()).permute(0, 3, 1, 2) + bias_xyz_to_lab
return x_lab
def rgb2lab(x: torch.Tensor, data_range: Union[int, float] = 255) -> torch.Tensor:
r"""Convert a batch of RGB images to a batch of LAB images
Args:
x: Batch of images with shape (N, 3, H, W). RGB colour space.
data_range: dynamic range of the input image.
Returns:
Batch of images with shape (N, 3, H, W). LAB colour space.
"""
return xyz2lab(rgb2xyz(x / float(data_range)))
def rgb2yiq(x: torch.Tensor) -> torch.Tensor:
r"""Convert a batch of RGB images to a batch of YIQ images
Args:
x: Batch of images with shape (N, 3, H, W). RGB colour space.
Returns:
Batch of images with shape (N, 3, H, W). YIQ colour space.
"""
yiq_weights = torch.tensor([
[0.299, 0.587, 0.114],
[0.5959, -0.2746, -0.3213],
[0.2115, -0.5227, 0.3112]], dtype=x.dtype, device=x.device).t()
x_yiq = torch.matmul(x.permute(0, 2, 3, 1), yiq_weights).permute(0, 3, 1, 2)
return x_yiq
def rgb2lhm(x: torch.Tensor) -> torch.Tensor:
r"""Convert a batch of RGB images to a batch of LHM images
Args:
x: Batch of images with shape (N, 3, H, W). RGB colour space.
Returns:
Batch of images with shape (N, 3, H, W). LHM colour space.
Reference:
https://arxiv.org/pdf/1608.07433.pdf
"""
lhm_weights = torch.tensor([
[0.2989, 0.587, 0.114],
[0.3, 0.04, -0.35],
[0.34, -0.6, 0.17]], dtype=x.dtype, device=x.device).t()
x_lhm = torch.matmul(x.permute(0, 2, 3, 1), lhm_weights).permute(0, 3, 1, 2)
return x_lhm