|
import streamlit as st |
|
from PIL import Image |
|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
import os |
|
|
|
|
|
|
|
model = YOLO(https://colab.research.google.com/drive/1IAyIjPN1J_9s5MhJ0uCsccxfcA0WfXl2?authuser=1 |
|
|
|
|
|
|
|
def detect_action(image_path): |
|
results = model.predict(source=image_path, conf=0.25, save=False) |
|
result = results[0] |
|
detections = [ |
|
(model.names[int(box.cls[0])], float(box.conf[0])) for box in result.boxes |
|
] |
|
|
|
|
|
action_scores = classify_action(detections) |
|
|
|
return result.plot(), action_scores |
|
|
|
def classify_action(detections): |
|
detected_objects = [d[0] for d in detections] |
|
|
|
action_scores = { |
|
'Stealing': 0.0, |
|
'Sneaking': 0.0, |
|
'Peaking': 0.0, |
|
'Normal': 0.0 |
|
} |
|
|
|
if 'person' in detected_objects: |
|
if any(obj in detected_objects for obj in ['backpack', 'handbag', 'suitcase']): |
|
action_scores['Stealing'] += 0.4 |
|
if 'refrigerator' in detected_objects: |
|
action_scores['Stealing'] += 0.3 |
|
if [conf for obj, conf in detections if obj == 'person'][0] < 0.6: |
|
action_scores['Sneaking'] += 0.5 |
|
if len(detected_objects) <= 2: |
|
action_scores['Peaking'] += 0.5 |
|
|
|
if not any(score > 0.3 for score in action_scores.values()): |
|
action_scores['Normal'] = 0.4 |
|
|
|
return action_scores |
|
|
|
|
|
st.title('Suspicious Activity Detection') |
|
st.write('Upload an image to detect suspicious activities.') |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type="jpg") |
|
if uploaded_file is not None: |
|
|
|
image = Image.open(uploaded_file) |
|
st.image(image, caption='Uploaded Image', use_column_width=True) |
|
|
|
|
|
img_path = "/tmp/uploaded_image.jpg" |
|
image.save(img_path) |
|
|
|
|
|
st.write("Detecting action...") |
|
detected_image, action_scores = detect_action(img_path) |
|
|
|
st.image(detected_image, caption='Detected Image', use_column_width=True) |
|
|
|
|
|
st.write("Action Probability Scores:") |
|
for action, score in action_scores.items(): |
|
st.write(f"{action}: {score:.2%}") |
|
|
|
|
|
predicted_action = max(action_scores.items(), key=lambda x: x[1]) |
|
st.write(f"Predicted Action: {predicted_action[0]} ({predicted_action[1]:.2%} confidence)") |
|
|
|
|