|
import streamlit as st
|
|
from PIL import Image
|
|
import cv2
|
|
import numpy as np
|
|
from ultralytics import YOLO
|
|
import os
|
|
|
|
|
|
|
|
model = YOLO(r'C:\Users\SRUTHI\Desktop\python-app\yolo11l.pt')
|
|
|
|
|
|
|
|
def detect_action(image_path):
|
|
results = model.predict(source=image_path, conf=0.25, save=False)
|
|
result = results[0]
|
|
detections = [
|
|
(model.names[int(box.cls[0])], float(box.conf[0])) for box in result.boxes
|
|
]
|
|
|
|
|
|
action_scores = classify_action(detections)
|
|
|
|
return result.plot(), action_scores
|
|
|
|
def classify_action(detections):
|
|
detected_objects = [d[0] for d in detections]
|
|
|
|
action_scores = {
|
|
'Stealing': 0.0,
|
|
'Sneaking': 0.0,
|
|
'Peaking': 0.0,
|
|
'Normal': 0.0
|
|
}
|
|
|
|
if 'person' in detected_objects:
|
|
if any(obj in detected_objects for obj in ['backpack', 'handbag', 'suitcase']):
|
|
action_scores['Stealing'] += 0.4
|
|
if 'refrigerator' in detected_objects:
|
|
action_scores['Stealing'] += 0.3
|
|
if [conf for obj, conf in detections if obj == 'person'][0] < 0.6:
|
|
action_scores['Sneaking'] += 0.5
|
|
if len(detected_objects) <= 2:
|
|
action_scores['Peaking'] += 0.5
|
|
|
|
if not any(score > 0.3 for score in action_scores.values()):
|
|
action_scores['Normal'] = 0.4
|
|
|
|
return action_scores
|
|
|
|
|
|
st.title('Suspicious Activity Detection')
|
|
st.write('Upload an image to detect suspicious activities.')
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
|
if uploaded_file is not None:
|
|
|
|
image = Image.open(uploaded_file)
|
|
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
|
|
|
|
img_path = "/tmp/uploaded_image.jpg"
|
|
image.save(img_path)
|
|
|
|
|
|
st.write("Detecting action...")
|
|
detected_image, action_scores = detect_action(img_path)
|
|
|
|
st.image(detected_image, caption='Detected Image', use_column_width=True)
|
|
|
|
|
|
st.write("Action Probability Scores:")
|
|
for action, score in action_scores.items():
|
|
st.write(f"{action}: {score:.2%}")
|
|
|
|
|
|
predicted_action = max(action_scores.items(), key=lambda x: x[1])
|
|
st.write(f"Predicted Action: {predicted_action[0]} ({predicted_action[1]:.2%} confidence)")
|
|
|
|
|