|
import streamlit as st
|
|
from ultralytics import YOLO
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
|
|
st.title("π Suspicious Activity Detection with YOLOv11")
|
|
|
|
|
|
@st.cache_resource
|
|
def load_model():
|
|
return YOLO("yolo11l.pt")
|
|
|
|
model = load_model()
|
|
|
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
|
|
|
if uploaded_file:
|
|
image = Image.open(uploaded_file)
|
|
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
if st.button("Detect Activity"):
|
|
img_array = np.array(image.convert("RGB"))[..., ::-1]
|
|
results = model.predict(img_array)
|
|
|
|
for r in results:
|
|
plotted = r.plot()
|
|
st.image(plotted, caption="Detections", use_column_width=True)
|
|
|
|
st.subheader("Detected Objects:")
|
|
for box in r.boxes:
|
|
conf = float(box.conf[0])
|
|
cls = int(box.cls[0])
|
|
cls_name = model.names[cls]
|
|
st.write(f"- {cls_name} (Confidence: {conf:.2f})")
|
|
|