OpenPose / app.py
Fazhong Liu
init
40bae10
raw
history blame
2.92 kB
import cv2
import matplotlib.pyplot as plt
import copy
import numpy as np
import gradio as gr
from src import model
from src import util
from src.body import Body
from src.hand import Hand
def pose_estimation(test_image):
bgr_image_path = './test.png'
with open(bgr_image_path, 'wb') as bgr_file:
bgr_file.write(test_image)
# 加载估计模型
body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')
test_image = bgr_image_path
oriImg = cv2.imread(test_image) # B,G,R order
# oriImg = test_image
# 姿态估计
candidate, subset = body_estimation(oriImg)
canvas = copy.deepcopy(oriImg)
# 绘制身体姿态
canvas = util.draw_bodypose(canvas, candidate, subset)
# print(candidate)
# print(subset)
# detect hand
hands_list = util.handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# if is_left:
# plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
# plt.show()
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
# else:
# peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
# peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
# peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
# print(peaks)
all_hand_peaks.append(peaks)
canvas = util.draw_handpose(canvas, all_hand_peaks)
plt.imshow(canvas[:, :, [2, 1, 0]])
plt.axis('off')
plt.savefig('./out.jpg')
# plt.show()
return './out.jpg'
# Convert the image path to bytes for Gradio to display
def convert_image_to_bytes(image_path):
with open(image_path, "rb") as image_file:
return image_file.read()
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Pose Estimation")
with gr.Row():
image = gr.File(label="Upload Image", type="binary")
output_image = gr.Image(label="Estimation Result")
submit_button = gr.Button("Start Estimation")
# Run pose estimation and display results when the button is clicked
submit_button.click(
pose_estimation,
inputs=[image],
outputs=[output_image]
)
# Clear the results
clear_button = gr.Button("Clear")
def clear_outputs():
output_image.clear()
clear_button.click(
clear_outputs,
inputs=[],
outputs=[output_image]
)
if __name__ == "__main__":
demo.launch(debug=True)