from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Medical tool: Fetch research papers from PubMed @tool def get_pubmed_articles(query: str) -> str: """Fetches the latest research papers from PubMed based on a query. Args: query: The medical or biological topic to search for. """ url = f"https://api.ncbi.nlm.nih.gov/lit/ctxp/v1/pubmed/?format=summary&term={query}" response = requests.get(url) if response.status_code == 200: return response.json() # Return article summary else: return "Failed to fetch articles." # Medical tool: Explain medical terminology @tool def explain_medical_term(term: str) -> str: """Provides a simple explanation of a medical term. Args: term: The medical term to explain. """ explanations = { "hypertension": "Hypertension, or high blood pressure, is a condition where the force of blood against the artery walls is too high.", "diabetes": "Diabetes is a chronic disease where the body either doesn't produce enough insulin or can't use it effectively.", "anemia": "Anemia is a condition in which the blood lacks enough healthy red blood cells to carry oxygen.", } return explanations.get(term.lower(), "No definition found. Try a different term.") # Tool for fetching current time in a timezone @tool def get_current_time_in_timezone(timezone: str) -> str: """Fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: tz = pytz.timezone(timezone) local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" # Load the medical AI model (BioBERT for medical text processing) model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='dmis-lab/biobert-v1.1', # BioBERT for medical NLP tasks custom_role_conversions=None, ) # Load prompt templates with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) # Define the AI agent with medical expertise agent = CodeAgent( model=model, tools=[FinalAnswerTool(), get_pubmed_articles, explain_medical_term, get_current_time_in_timezone], max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name="Medical Bio Expert", description="An AI agent specialized in medical biology, capable of answering biomedical questions, retrieving PubMed articles, and explaining medical terms.", prompt_templates=prompt_templates ) # Launch the Gradio UI for interaction GradioUI(agent, title="Medical Biology AI Expert", description="Ask me anything about medical biology!").launch()