Spaces:
Runtime error
Runtime error
Delete GenAI_1.py
Browse files- GenAI_1.py +0 -215
GenAI_1.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[144]:
|
5 |
-
|
6 |
-
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
from langchain.chains import LLMChain
|
10 |
-
|
11 |
-
import os
|
12 |
-
|
13 |
-
import google.generativeai as genai
|
14 |
-
from langchain.document_loaders import PyPDFLoader
|
15 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
-
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
17 |
-
from langchain.vectorstores import FAISS
|
18 |
-
import gradio as gr
|
19 |
-
|
20 |
-
|
21 |
-
os.environ["MY_SECRET_KEY"] = "AIzaSyDRj3wAgqOCjc_D45W_u-G3y9dk5YDgxEo"
|
22 |
-
|
23 |
-
|
24 |
-
# In[145]:
|
25 |
-
|
26 |
-
|
27 |
-
#pip install pypdf
|
28 |
-
#!pip install faiss-cpu
|
29 |
-
|
30 |
-
|
31 |
-
# In[146]:
|
32 |
-
|
33 |
-
|
34 |
-
google_api_key = os.environ["MY_SECRET_KEY"]
|
35 |
-
|
36 |
-
# Check if the API key was found
|
37 |
-
if google_api_key:
|
38 |
-
# Set the environment variable if the API key was found
|
39 |
-
os.environ["GOOGLE_API_KEY"] = google_api_key
|
40 |
-
|
41 |
-
llm = ChatGoogleGenerativeAI(
|
42 |
-
model="gemini-pro", # Specify the model name
|
43 |
-
google_api_key=os.environ["GOOGLE_API_KEY"]
|
44 |
-
)
|
45 |
-
else:
|
46 |
-
print("Error: GOOGLE_API_KEY not found in Colab secrets. Please store your API key.")
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
genai.configure(api_key=google_api_key)
|
51 |
-
model = genai.GenerativeModel("gemini-pro")
|
52 |
-
|
53 |
-
|
54 |
-
# In[147]:
|
55 |
-
|
56 |
-
|
57 |
-
work_dir=os.getcwd()
|
58 |
-
|
59 |
-
|
60 |
-
# In[148]:
|
61 |
-
|
62 |
-
|
63 |
-
# Verify file existence
|
64 |
-
assert "RAG.pdf" in os.listdir(work_dir), "RAG.pdf not found in the specified directory!"
|
65 |
-
print(f"Current Working Directory: {os.getcwd()}")
|
66 |
-
|
67 |
-
|
68 |
-
# In[149]:
|
69 |
-
|
70 |
-
|
71 |
-
# Load PDF and split text
|
72 |
-
pdf_path = "RAG.pdf" # Ensure this file is uploaded to Colab
|
73 |
-
loader = PyPDFLoader(pdf_path)
|
74 |
-
documents = loader.load()
|
75 |
-
|
76 |
-
# Split text into chunks
|
77 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
|
78 |
-
text_chunks = text_splitter.split_documents(documents)
|
79 |
-
|
80 |
-
|
81 |
-
# In[150]:
|
82 |
-
|
83 |
-
|
84 |
-
# Generate embeddings
|
85 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
86 |
-
|
87 |
-
# Store embeddings in FAISS index
|
88 |
-
vectorstore = FAISS.from_documents(text_chunks, embeddings)
|
89 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
90 |
-
|
91 |
-
|
92 |
-
# In[151]:
|
93 |
-
|
94 |
-
|
95 |
-
# Set up Gemini model
|
96 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001", temperature=0)
|
97 |
-
#llm = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0)
|
98 |
-
|
99 |
-
|
100 |
-
# In[152]:
|
101 |
-
|
102 |
-
|
103 |
-
import gradio as gr
|
104 |
-
from langchain.prompts import PromptTemplate
|
105 |
-
from langchain.chains import LLMChain
|
106 |
-
|
107 |
-
def rag_query(query):
|
108 |
-
# Retrieve relevant documents
|
109 |
-
docs = retriever.get_relevant_documents(query)
|
110 |
-
|
111 |
-
# Otherwise, use RAG
|
112 |
-
context = "\n".join([doc.page_content for doc in docs])
|
113 |
-
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer directly and concisely:"
|
114 |
-
|
115 |
-
try:
|
116 |
-
response = llm.invoke(prompt)
|
117 |
-
except Exception as e:
|
118 |
-
response = f"Error in RAG processing: {str(e)}"
|
119 |
-
|
120 |
-
return response.content
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
# In[153]:
|
126 |
-
|
127 |
-
|
128 |
-
import gradio as gr
|
129 |
-
from langchain.prompts import PromptTemplate
|
130 |
-
from langchain.chains import LLMChain
|
131 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
132 |
-
|
133 |
-
# Initialize LLM once (avoid repeated initialization)
|
134 |
-
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
135 |
-
|
136 |
-
# Define the general query function
|
137 |
-
def general_query(query):
|
138 |
-
try:
|
139 |
-
# Define the prompt correctly
|
140 |
-
prompt = PromptTemplate.from_template("Answer the following query: {query}")
|
141 |
-
|
142 |
-
# Create an LLM Chain
|
143 |
-
chain = LLMChain(llm=llm, prompt=prompt)
|
144 |
-
|
145 |
-
# Run chatbot and return response
|
146 |
-
response = chain.run(query=query)
|
147 |
-
|
148 |
-
return response # Return response directly (not response.content)
|
149 |
-
|
150 |
-
except Exception as e:
|
151 |
-
return f"Error: {str(e)}"
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
# In[154]:
|
156 |
-
|
157 |
-
|
158 |
-
import gradio as gr
|
159 |
-
|
160 |
-
|
161 |
-
# Function to call the selected query method
|
162 |
-
def query_router(query, method):
|
163 |
-
if method == "Team Query": # Ensure exact match with dropdown options
|
164 |
-
return rag_query(query)
|
165 |
-
elif method == "General Query":
|
166 |
-
return general_query(query)
|
167 |
-
return "Invalid selection!"
|
168 |
-
|
169 |
-
# Define local image paths
|
170 |
-
logo_path = "Equinix-LOGO.jpeg" # Ensure this file exists
|
171 |
-
|
172 |
-
# Custom CSS for background styling
|
173 |
-
custom_css = """
|
174 |
-
.gradio-container {
|
175 |
-
background-color: #f0f0f0;
|
176 |
-
text-align: center;
|
177 |
-
}
|
178 |
-
#logo img {
|
179 |
-
display: block;
|
180 |
-
margin: 0 auto;
|
181 |
-
max-width: 200px; /* Adjust size */
|
182 |
-
}
|
183 |
-
"""
|
184 |
-
|
185 |
-
# Create Gradio UI
|
186 |
-
with gr.Blocks(css=custom_css) as ui:
|
187 |
-
gr.Image(logo_path, elem_id="logo", show_label=False, height=100, width=200) # Display Logo
|
188 |
-
|
189 |
-
# Title & Description
|
190 |
-
gr.Markdown("<h1 style='text-align: center; color: black;'>Equinix Chatbot for Automation Team</h1>")
|
191 |
-
gr.Markdown("<p style='text-align: center; color: black;'>Ask me anything!</p>")
|
192 |
-
|
193 |
-
# Input & Dropdown Section
|
194 |
-
with gr.Row():
|
195 |
-
query_input = gr.Textbox(label="Enter your query")
|
196 |
-
query_method = gr.Dropdown(["Team Query", "General Query"], label="Select Query Type")
|
197 |
-
|
198 |
-
# Button for submitting query
|
199 |
-
submit_button = gr.Button("Submit")
|
200 |
-
|
201 |
-
# Output Textbox
|
202 |
-
output_box = gr.Textbox(label="Response", interactive=False)
|
203 |
-
|
204 |
-
# Button Click Event
|
205 |
-
submit_button.click(query_router, inputs=[query_input, query_method], outputs=output_box)
|
206 |
-
|
207 |
-
# Launch UI
|
208 |
-
ui.launch(share=True)
|
209 |
-
|
210 |
-
|
211 |
-
# In[168]:
|
212 |
-
|
213 |
-
|
214 |
-
get_ipython().system('jupyter nbconvert --to script GenAI_1.ipynb')
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|