Spaces:
Runtime error
Runtime error
File size: 8,771 Bytes
0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c 0ef86ce 764719c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import gradio as gr
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from datetime import datetime
import pytz
import time
# Get API key from Hugging Face Spaces secrets
google_api_key = os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
raise ValueError("GOOGLE_API_KEY not found in environment variables. Please add it to Hugging Face Space secrets.")
# Configure Google Generative AI
genai.configure(api_key=google_api_key)
# Function to get current date and time
def get_current_datetime():
# Using UTC as default, but you can change to any timezone
utc_now = datetime.now(pytz.UTC)
# Convert to IST (Indian Standard Time) - modify as needed
ist_timezone = pytz.timezone('Asia/Kolkata')
ist_now = utc_now.astimezone(ist_timezone)
# Format the datetime
formatted_date = ist_now.strftime("%B %d, %Y")
formatted_time = ist_now.strftime("%I:%M:%S %p")
return formatted_date, formatted_time
# Load PDF and create vector store
def initialize_retriever():
try:
# Get current directory
current_dir = os.getcwd()
print(f"Current working directory: {current_dir}")
# List files in current directory for debugging
print(f"Files in directory: {os.listdir(current_dir)}")
# Use absolute path for the PDF
pdf_path = os.path.join(current_dir, "Team1.pdf")
print(f"Attempting to load PDF from: {pdf_path}")
# Check if file exists
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"The file {pdf_path} does not exist")
# Load PDF
loader = PyPDFLoader(pdf_path)
documents = loader.load()
print(f"Successfully loaded {len(documents)} pages from the PDF")
# Split text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
text_chunks = text_splitter.split_documents(documents)
print(f"Split into {len(text_chunks)} text chunks")
# Generate embeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# Store embeddings in FAISS index
vectorstore = FAISS.from_documents(text_chunks, embeddings)
print("Successfully created vector store")
return vectorstore.as_retriever(search_kwargs={"k": 4})
except Exception as e:
print(f"Error in initialize_retriever: {str(e)}")
# Return a dummy retriever for graceful failure
class DummyRetriever:
def get_relevant_documents(self, query):
return []
print("Returning dummy retriever due to error")
return DummyRetriever()
# Initialize LLM
def get_llm():
try:
return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
except Exception as e:
print(f"Error initializing LLM: {str(e)}")
return None
llm = get_llm()
# RAG query function
def rag_query(query, retriever):
if retriever is None:
return "Error: Could not initialize document retriever. Please check if Team1.pdf exists."
# Get current date and time for context
current_date, current_time = get_current_datetime()
try:
# Retrieve relevant documents
docs = retriever.get_relevant_documents(query)
if not docs:
return "No relevant information found in the document. Try a general query instead."
# Create context from retrieved documents
context = "\n".join([doc.page_content for doc in docs])
prompt = f"""Context:\n{context}
Current Date: {current_date}
Current Time: {current_time}
Question: {query}
Answer directly and concisely, using the current date and time information if relevant:"""
response = llm.invoke(prompt)
return response.content
except Exception as e:
return f"Error in RAG processing: {str(e)}"
# General query function
def general_query(query):
if llm is None:
return "Error: Could not initialize language model. Please check your API key."
# Get current date and time for context
current_date, current_time = get_current_datetime()
try:
# Define the prompt with date and time context
prompt_template = """Current Date: {date}
Current Time: {time}
Answer the following query, using the current date and time information if relevant: {query}"""
prompt = PromptTemplate.from_template(prompt_template)
# Create an LLM Chain
chain = LLMChain(llm=llm, prompt=prompt)
# Run chatbot and get response
response = chain.run(date=current_date, time=current_time, query=query)
return response
except Exception as e:
return f"Error in general query: {str(e)}"
# Function to handle the case when no PDF is found
def file_not_found_message():
return ("The Team1.pdf file could not be found. Team Query mode will not work properly. "
"Please ensure the PDF is correctly uploaded to the Hugging Face Space.")
# Query router function
def query_router(query, method, retriever):
if method == "Team Query":
if isinstance(retriever, type) or retriever is None:
return file_not_found_message()
return rag_query(query, retriever)
elif method == "General Query":
return general_query(query)
return "Invalid selection!"
# Function to update the clock
def update_datetime():
date, time = get_current_datetime()
return date, time
# Main function to create and launch the Gradio interface
def main():
# Initialize retriever
print("Initializing retriever...")
retriever = initialize_retriever()
# Custom CSS for styling
custom_css = """
.gradio-container {
background-color: #f0f0f0;
text-align: center;
}
#logo img {
display: block;
margin: 0 auto;
max-width: 200px;
}
.datetime-display {
text-align: center;
margin-bottom: 20px;
font-size: 18px;
font-weight: bold;
}
"""
logo_path = "equinix-sign.jpg"
logo_exists = os.path.exists(logo_path)
# Create Gradio UI
with gr.Blocks(css=custom_css) as ui:
if logo_exists:
gr.Image(logo_path, elem_id="logo", show_label=False, height=100, width=200)
else:
gr.Markdown("<h2 style='text-align: center;'>Equinix</h2>")
print(f"Warning: Logo file {logo_path} not found")
# Title & Description
gr.Markdown("<h1 style='text-align: center; color: black;'>Equinix Chatbot for Automation Team</h1>")
# Date and Time Display
with gr.Row(elem_classes="datetime-display"):
date_display = gr.Textbox(label="Date", interactive=False)
time_display = gr.Textbox(label="Time", interactive=False)
# Update date and time using Gradio's interval functionality
date_val, time_val = get_current_datetime()
date_display.value = date_val
time_display.value = time_val
# Add refresh button for time
refresh_btn = gr.Button("Update Date & Time")
refresh_btn.click(fn=update_datetime, inputs=[], outputs=[date_display, time_display])
gr.Markdown("<p style='text-align: center; color: black;'>Ask me anything!</p>")
# Input & Dropdown Section
with gr.Row():
query_input = gr.Textbox(label="Enter your query")
query_method = gr.Dropdown(["Team Query", "General Query"], label="Select Query Type", value="Team Query")
# Button for submitting query
submit_button = gr.Button("Submit")
# Output Textbox
output_box = gr.Textbox(label="Response", interactive=False)
# Button Click Events
submit_button.click(
lambda query, method: query_router(query, method, retriever),
inputs=[query_input, query_method],
outputs=output_box
)
# This callback will update the date and time whenever the user submits a query
submit_button.click(
fn=update_datetime,
inputs=[],
outputs=[date_display, time_display]
)
# Launch UI
ui.launch()
if __name__ == "__main__":
main() |