File size: 8,771 Bytes
0ef86ce
764719c
0ef86ce
 
764719c
 
 
 
 
 
 
 
0ef86ce
764719c
 
0ef86ce
764719c
 
0ef86ce
764719c
0ef86ce
 
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
0ef86ce
764719c
 
0ef86ce
764719c
 
 
 
0ef86ce
764719c
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
0ef86ce
764719c
0ef86ce
764719c
 
0ef86ce
764719c
0ef86ce
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
0ef86ce
764719c
0ef86ce
764719c
 
 
 
 
 
0ef86ce
764719c
 
 
 
 
 
0ef86ce
 
 
 
764719c
 
 
0ef86ce
 
764719c
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
 
 
 
764719c
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef86ce
764719c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import gradio as gr
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from datetime import datetime
import pytz
import time

# Get API key from Hugging Face Spaces secrets
google_api_key = os.environ.get("GOOGLE_API_KEY")

if not google_api_key:
    raise ValueError("GOOGLE_API_KEY not found in environment variables. Please add it to Hugging Face Space secrets.")

# Configure Google Generative AI
genai.configure(api_key=google_api_key)

# Function to get current date and time
def get_current_datetime():
    # Using UTC as default, but you can change to any timezone
    utc_now = datetime.now(pytz.UTC)
    
    # Convert to IST (Indian Standard Time) - modify as needed
    ist_timezone = pytz.timezone('Asia/Kolkata')
    ist_now = utc_now.astimezone(ist_timezone)
    
    # Format the datetime
    formatted_date = ist_now.strftime("%B %d, %Y")
    formatted_time = ist_now.strftime("%I:%M:%S %p")
    
    return formatted_date, formatted_time

# Load PDF and create vector store
def initialize_retriever():
    try:
        # Get current directory
        current_dir = os.getcwd()
        print(f"Current working directory: {current_dir}")
        
        # List files in current directory for debugging
        print(f"Files in directory: {os.listdir(current_dir)}")
        
        # Use absolute path for the PDF
        pdf_path = os.path.join(current_dir, "Team1.pdf")
        print(f"Attempting to load PDF from: {pdf_path}")
        
        # Check if file exists
        if not os.path.exists(pdf_path):
            raise FileNotFoundError(f"The file {pdf_path} does not exist")
            
        # Load PDF
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        
        print(f"Successfully loaded {len(documents)} pages from the PDF")

        # Split text into chunks
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
        text_chunks = text_splitter.split_documents(documents)
        print(f"Split into {len(text_chunks)} text chunks")

        # Generate embeddings
        embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")

        # Store embeddings in FAISS index
        vectorstore = FAISS.from_documents(text_chunks, embeddings)
        print("Successfully created vector store")
        return vectorstore.as_retriever(search_kwargs={"k": 4})
    
    except Exception as e:
        print(f"Error in initialize_retriever: {str(e)}")
        # Return a dummy retriever for graceful failure
        class DummyRetriever:
            def get_relevant_documents(self, query):
                return []
        
        print("Returning dummy retriever due to error")
        return DummyRetriever()

# Initialize LLM
def get_llm():
    try:
        return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    except Exception as e:
        print(f"Error initializing LLM: {str(e)}")
        return None

llm = get_llm()

# RAG query function
def rag_query(query, retriever):
    if retriever is None:
        return "Error: Could not initialize document retriever. Please check if Team1.pdf exists."
    
    # Get current date and time for context
    current_date, current_time = get_current_datetime()
    
    try:
        # Retrieve relevant documents
        docs = retriever.get_relevant_documents(query)
        
        if not docs:
            return "No relevant information found in the document. Try a general query instead."
        
        # Create context from retrieved documents
        context = "\n".join([doc.page_content for doc in docs])
        prompt = f"""Context:\n{context}
Current Date: {current_date}
Current Time: {current_time}
Question: {query}
Answer directly and concisely, using the current date and time information if relevant:"""

        response = llm.invoke(prompt)
        return response.content
    except Exception as e:
        return f"Error in RAG processing: {str(e)}"

# General query function
def general_query(query):
    if llm is None:
        return "Error: Could not initialize language model. Please check your API key."
    
    # Get current date and time for context
    current_date, current_time = get_current_datetime()
    
    try:
        # Define the prompt with date and time context
        prompt_template = """Current Date: {date}
Current Time: {time}
Answer the following query, using the current date and time information if relevant: {query}"""
        
        prompt = PromptTemplate.from_template(prompt_template)
        
        # Create an LLM Chain
        chain = LLMChain(llm=llm, prompt=prompt)
        
        # Run chatbot and get response
        response = chain.run(date=current_date, time=current_time, query=query)
        return response
    
    except Exception as e:
        return f"Error in general query: {str(e)}"

# Function to handle the case when no PDF is found
def file_not_found_message():
    return ("The Team1.pdf file could not be found. Team Query mode will not work properly. "
            "Please ensure the PDF is correctly uploaded to the Hugging Face Space.")

# Query router function
def query_router(query, method, retriever):
    if method == "Team Query":
        if isinstance(retriever, type) or retriever is None:
            return file_not_found_message()
        return rag_query(query, retriever)
    elif method == "General Query":
        return general_query(query)
    return "Invalid selection!"

# Function to update the clock
def update_datetime():
    date, time = get_current_datetime()
    return date, time

# Main function to create and launch the Gradio interface
def main():
    # Initialize retriever
    print("Initializing retriever...")
    retriever = initialize_retriever()
    
    # Custom CSS for styling
    custom_css = """
    .gradio-container {
        background-color: #f0f0f0;
        text-align: center;
    }
    #logo img {
        display: block;
        margin: 0 auto;
        max-width: 200px;
    }
    .datetime-display {
        text-align: center;
        margin-bottom: 20px;
        font-size: 18px;
        font-weight: bold;
    }
    """
    
    logo_path = "equinix-sign.jpg"
    logo_exists = os.path.exists(logo_path)
    
    # Create Gradio UI
    with gr.Blocks(css=custom_css) as ui:
        if logo_exists:
            gr.Image(logo_path, elem_id="logo", show_label=False, height=100, width=200)
        else:
            gr.Markdown("<h2 style='text-align: center;'>Equinix</h2>")
            print(f"Warning: Logo file {logo_path} not found")
        
        # Title & Description
        gr.Markdown("<h1 style='text-align: center; color: black;'>Equinix Chatbot for Automation Team</h1>")
        
        # Date and Time Display
        with gr.Row(elem_classes="datetime-display"):
            date_display = gr.Textbox(label="Date", interactive=False)
            time_display = gr.Textbox(label="Time", interactive=False)
        
        # Update date and time using Gradio's interval functionality
        date_val, time_val = get_current_datetime()
        date_display.value = date_val
        time_display.value = time_val
        
        # Add refresh button for time
        refresh_btn = gr.Button("Update Date & Time")
        refresh_btn.click(fn=update_datetime, inputs=[], outputs=[date_display, time_display])
        
        gr.Markdown("<p style='text-align: center; color: black;'>Ask me anything!</p>")

        # Input & Dropdown Section
        with gr.Row():
            query_input = gr.Textbox(label="Enter your query")
            query_method = gr.Dropdown(["Team Query", "General Query"], label="Select Query Type", value="Team Query")
        
        # Button for submitting query
        submit_button = gr.Button("Submit")

        # Output Textbox
        output_box = gr.Textbox(label="Response", interactive=False)

        # Button Click Events
        submit_button.click(
            lambda query, method: query_router(query, method, retriever), 
            inputs=[query_input, query_method], 
            outputs=output_box
        )
        
        # This callback will update the date and time whenever the user submits a query
        submit_button.click(
            fn=update_datetime,
            inputs=[],
            outputs=[date_display, time_display]
        )
    
    # Launch UI
    ui.launch()

if __name__ == "__main__":
    main()