Spaces:
Running on Zero

Ruurd commited on
Commit
b41f4d7
·
1 Parent(s): a494446

Fix generation

Browse files
Files changed (1) hide show
  1. app.py +4 -9
app.py CHANGED
@@ -171,15 +171,11 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
171
  for i in range(max_it):
172
  print('Generating output')
173
 
174
- # Compose full input: original prompt + current answer
175
- full_input_tokens = ori_input_tokens[:answer_start] + current_tokens[answer_start:]
176
- full_input_tokens = full_input_tokens[:256] + [pad_token] * max(0, 256 - len(full_input_tokens))
177
-
178
  # Model step
179
- generated_tokens, confidences = generate_diffusion_text(full_input_tokens)
180
 
181
  # Save full output for noising step
182
- current_tokens = generated_tokens
183
 
184
  # --- GREEN HIGHLIGHT ---
185
  decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
@@ -202,17 +198,16 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
202
  threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
203
  if use_confidence_noising:
204
  noised_answer = confidence_guided_noising(
205
- generated_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping
206
  )
207
  just_noised_indices = []
208
  else:
209
  noised_answer, just_noised_indices = noisify_answer(
210
- generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
211
  )
212
 
213
  # Compose full input again: prompt + noised answer
214
  current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
215
- current_tokens = current_tokens[:256] + [pad_token] * max(0, 256 - len(current_tokens))
216
 
217
  # --- RED HIGHLIGHT ---
218
  decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
 
171
  for i in range(max_it):
172
  print('Generating output')
173
 
 
 
 
 
174
  # Model step
175
+ generated_tokens, confidences = generate_diffusion_text(current_tokens)
176
 
177
  # Save full output for noising step
178
+ current_tokens = ori_input_tokens[answer_start] + generated_tokens[answer_start:]
179
 
180
  # --- GREEN HIGHLIGHT ---
181
  decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
 
198
  threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
199
  if use_confidence_noising:
200
  noised_answer = confidence_guided_noising(
201
+ current_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping
202
  )
203
  just_noised_indices = []
204
  else:
205
  noised_answer, just_noised_indices = noisify_answer(
206
+ current_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
207
  )
208
 
209
  # Compose full input again: prompt + noised answer
210
  current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
 
211
 
212
  # --- RED HIGHLIGHT ---
213
  decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])