Spaces:
Running
on
Zero
Running
on
Zero
Change interface
Browse files
app.py
CHANGED
@@ -84,8 +84,17 @@ def generate_diffusion_text(input_ids, answer_start):
|
|
84 |
|
85 |
# --- Inference Wrapper ---
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
@spaces.GPU
|
88 |
-
def
|
89 |
placeholder = "What do you know about the city of New York?"
|
90 |
if question.strip() == "":
|
91 |
question = placeholder
|
@@ -94,21 +103,15 @@ def diffusion_chat(question, eot_weight, max_it, sharpness):
|
|
94 |
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
95 |
answer_start = find_answer_start(input_ids, assistant_marker_ids)
|
96 |
if answer_start is None:
|
97 |
-
|
98 |
-
return
|
99 |
-
|
100 |
-
if len(input_ids) < 256:
|
101 |
-
input_ids += [pad_token] * (256 - len(input_ids))
|
102 |
-
else:
|
103 |
-
input_ids = input_ids[:256]
|
104 |
|
105 |
-
|
106 |
-
current_tokens = noisify_answer(
|
107 |
prev_decoded_tokens = []
|
108 |
last_tokens = []
|
|
|
109 |
|
110 |
for i in range(max_it):
|
111 |
-
print('Generating output')
|
112 |
generated_tokens = generate_diffusion_text(current_tokens, answer_start)
|
113 |
current_tokens = generated_tokens
|
114 |
|
@@ -117,24 +120,17 @@ def diffusion_chat(question, eot_weight, max_it, sharpness):
|
|
117 |
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
118 |
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
else:
|
128 |
-
highlighted = [tokenizer.convert_tokens_to_string([tok]) for tok in filtered_tokens]
|
129 |
|
130 |
prev_decoded_tokens = decoded_tokens
|
131 |
-
yield f"<b>Iteration {i+1}/{max_it} (running):</b><br>" + "".join(highlighted)
|
132 |
-
|
133 |
last_tokens.append(generated_tokens)
|
134 |
-
if len(last_tokens)
|
135 |
-
last_tokens.pop(0)
|
136 |
-
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
|
137 |
-
yield f"<b>Stopped early after {i+1} iterations.</b>"
|
138 |
break
|
139 |
|
140 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
@@ -144,27 +140,31 @@ def diffusion_chat(question, eot_weight, max_it, sharpness):
|
|
144 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
145 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
146 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
# ---
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
demo
|
157 |
-
fn=diffusion_chat,
|
158 |
-
inputs=[
|
159 |
-
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
|
160 |
-
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
|
161 |
-
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
|
162 |
-
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)")
|
163 |
-
],
|
164 |
-
outputs=gr.HTML(label="Diffusion Output"),
|
165 |
-
title="Diffusion Language Model Chat",
|
166 |
-
theme="default",
|
167 |
-
description="This interface runs a diffusion-based language model to generate answers progressively."
|
168 |
-
)
|
169 |
-
|
170 |
-
demo.launch()
|
|
|
84 |
|
85 |
# --- Inference Wrapper ---
|
86 |
|
87 |
+
|
88 |
+
|
89 |
+
# --- Gradio Interface ---
|
90 |
+
|
91 |
+
print("Loading model...")
|
92 |
+
model = load_model()
|
93 |
+
print("✅ Model loaded.")
|
94 |
+
|
95 |
+
# --- Generation logic ---
|
96 |
@spaces.GPU
|
97 |
+
def run_diffusion_loop(question, eot_weight, max_it, sharpness):
|
98 |
placeholder = "What do you know about the city of New York?"
|
99 |
if question.strip() == "":
|
100 |
question = placeholder
|
|
|
103 |
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
104 |
answer_start = find_answer_start(input_ids, assistant_marker_ids)
|
105 |
if answer_start is None:
|
106 |
+
return [], "Error: Could not find Assistant marker in input."
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
input_ids = (input_ids + [pad_token] * (256 - len(input_ids)))[:256]
|
109 |
+
current_tokens = noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=eot_weight)
|
110 |
prev_decoded_tokens = []
|
111 |
last_tokens = []
|
112 |
+
history = ["**User:** " + question]
|
113 |
|
114 |
for i in range(max_it):
|
|
|
115 |
generated_tokens = generate_diffusion_text(current_tokens, answer_start)
|
116 |
current_tokens = generated_tokens
|
117 |
|
|
|
120 |
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
121 |
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
|
122 |
|
123 |
+
highlighted = []
|
124 |
+
for tok_new, tok_old in zip(filtered_tokens, filtered_prev_tokens):
|
125 |
+
text = tokenizer.convert_tokens_to_string([tok_new])
|
126 |
+
if tok_new != tok_old:
|
127 |
+
highlighted.append(f"<span style='color:green'>{text}</span>")
|
128 |
+
else:
|
129 |
+
highlighted.append(text)
|
|
|
|
|
130 |
|
131 |
prev_decoded_tokens = decoded_tokens
|
|
|
|
|
132 |
last_tokens.append(generated_tokens)
|
133 |
+
if len(last_tokens) == 3 and all(t == last_tokens[0] for t in last_tokens):
|
|
|
|
|
|
|
134 |
break
|
135 |
|
136 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
|
|
140 |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
141 |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
|
142 |
final_output = tokenizer.convert_tokens_to_string(final_tokens)
|
143 |
+
history.append("**Assistant:** " + final_output)
|
144 |
+
return history, final_output
|
145 |
+
|
146 |
+
# --- UI Layout ---
|
147 |
+
css = ".category-legend{display:none}"
|
148 |
+
with gr.Blocks(css=css) as demo:
|
149 |
+
gr.Markdown("# Tini Diffusion LLM 🌀")
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=3):
|
152 |
+
chatbox = gr.Chatbot(label="Conversation", value=[], height=400)
|
153 |
+
question_input = gr.Textbox(label="Your Question", placeholder="What do you want to ask?", scale=8)
|
154 |
+
send_btn = gr.Button("Generate")
|
155 |
+
with gr.Column(scale=2):
|
156 |
+
eot_weight = gr.Slider(0, 1, value=0.4, step=0.05, label="EOT weight")
|
157 |
+
max_iters = gr.Slider(1, 512, value=64, step=1, label="Iterations")
|
158 |
+
sharpness = gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="Sharpness")
|
159 |
+
|
160 |
+
def handle_submit(question, eot, max_it, sharp):
|
161 |
+
history, _ = run_diffusion_loop(question, eot, max_it, sharp)
|
162 |
+
return history
|
163 |
+
|
164 |
+
send_btn.click(
|
165 |
+
fn=handle_submit,
|
166 |
+
inputs=[question_input, eot_weight, max_iters, sharpness],
|
167 |
+
outputs=[chatbox]
|
168 |
+
)
|
169 |
|
170 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|