Spaces:
Running
on
Zero
Running
on
Zero
Try again
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from llama_diffusion_model import disable_dropout
|
|
8 |
import os
|
9 |
import importlib
|
10 |
from huggingface_hub import hf_hub_download
|
|
|
11 |
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
13 |
|
@@ -26,42 +27,16 @@ token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(toke
|
|
26 |
|
27 |
|
28 |
def load_model():
|
29 |
-
|
30 |
-
|
31 |
-
checkpoint_path = hf_hub_download(
|
32 |
-
repo_id="ruurd/tini_model",
|
33 |
filename="diffusion-model.pth",
|
34 |
token=os.getenv("HF_TOKEN")
|
35 |
)
|
36 |
|
37 |
-
|
38 |
-
# torch.serialization.clear_safe_globals()
|
39 |
-
# unsafe_globals = torch.serialization.get_unsafe_globals_in_checkpoint(checkpoint_path)
|
40 |
-
# missing_class_names = [name.split(".")[-1] for name in unsafe_globals]
|
41 |
-
|
42 |
-
# safe_classes = [cls for name, cls in globals().items() if name in missing_class_names]
|
43 |
-
|
44 |
-
# for class_path in unsafe_globals:
|
45 |
-
# try:
|
46 |
-
# module_name, class_name = class_path.rsplit(".", 1)
|
47 |
-
# module = importlib.import_module(module_name)
|
48 |
-
# cls = getattr(module, class_name)
|
49 |
-
# safe_classes.append(cls)
|
50 |
-
# except (ImportError, AttributeError) as e:
|
51 |
-
# print(f"⚠️ Warning: Could not import {class_path} - {e}")
|
52 |
-
|
53 |
-
# torch.serialization.add_safe_globals(safe_classes)
|
54 |
-
|
55 |
-
# 3. Actually load the full model
|
56 |
-
# model = torch.load(checkpoint_path, weights_only=True)
|
57 |
-
model = torch.load(checkpoint_path, map_location="cuda")
|
58 |
-
|
59 |
-
|
60 |
-
# 4. Final setup
|
61 |
model = disable_dropout(model)
|
62 |
model.to("cuda")
|
63 |
model.eval()
|
64 |
-
|
65 |
return model
|
66 |
|
67 |
|
|
|
8 |
import os
|
9 |
import importlib
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
+
from llama_diffusion_model import CustomTransformerModel, CustomTransformerConfig, disable_dropout
|
12 |
|
13 |
hf_token = os.getenv("HF_TOKEN")
|
14 |
|
|
|
27 |
|
28 |
|
29 |
def load_model():
|
30 |
+
ckpt_path = hf_hub_download(
|
31 |
+
repo_id="ruurd/diffusion-llama",
|
|
|
|
|
32 |
filename="diffusion-model.pth",
|
33 |
token=os.getenv("HF_TOKEN")
|
34 |
)
|
35 |
|
36 |
+
model = torch.load(ckpt_path, map_location="cuda") # no weights_only, no globals hack
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
model = disable_dropout(model)
|
38 |
model.to("cuda")
|
39 |
model.eval()
|
|
|
40 |
return model
|
41 |
|
42 |
|