Spaces:
Running
on
Zero
Running
on
Zero
Reimplement EOT weighting
Browse files
app.py
CHANGED
@@ -100,6 +100,9 @@ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, mask_
|
|
100 |
|
101 |
mixed_probs = token_probabilities.copy()
|
102 |
|
|
|
|
|
|
|
103 |
# Scale all other probabilities so they sum to 1 - mask_weight
|
104 |
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
105 |
scale = (1.0 - mask_weight) / total_other
|
@@ -159,6 +162,9 @@ def confidence_guided_noising(input_ids, answer_start, confidences, noise_clippi
|
|
159 |
|
160 |
mixed_probs = token_probabilities.copy()
|
161 |
|
|
|
|
|
|
|
162 |
# Scale all other probabilities so they sum to 1 - mask_weight
|
163 |
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
164 |
scale = (1.0 - mask_weight) / total_other
|
|
|
100 |
|
101 |
mixed_probs = token_probabilities.copy()
|
102 |
|
103 |
+
# Apply EOT weighting
|
104 |
+
mixed_probs[eot_token_id] *= eot_weight
|
105 |
+
|
106 |
# Scale all other probabilities so they sum to 1 - mask_weight
|
107 |
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
108 |
scale = (1.0 - mask_weight) / total_other
|
|
|
162 |
|
163 |
mixed_probs = token_probabilities.copy()
|
164 |
|
165 |
+
# Apply EOT weighting
|
166 |
+
mixed_probs[eot_token_id] *= eot_weight
|
167 |
+
|
168 |
# Scale all other probabilities so they sum to 1 - mask_weight
|
169 |
total_other = mixed_probs.sum() - mixed_probs[mask_token_id]
|
170 |
scale = (1.0 - mask_weight) / total_other
|