tini / llama_diffusion_model.py
Ruurd's picture
Updated model architecture
0af2920
raw
history blame
11 kB
import torch.nn as nn
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
from transformers.models.llama.modeling_llama import LlamaAttention
from torch.amp import autocast
from peft import LoraConfig, get_peft_model
from typing import Optional, Tuple
import torch
import os
hf_token = os.getenv("HF_TOKEN")
class BidirectionalLlamaAttention(LlamaAttention):
def __init__(self, original_layer, masking = 'unidirectional'):
super().__init__(original_layer.config, layer_idx=original_layer.layer_idx)
self.masking = masking
# Copy weights from original layer
self.q_proj.weight = original_layer.q_proj.weight
self.k_proj.weight = original_layer.k_proj.weight
self.v_proj.weight = original_layer.v_proj.weight
self.o_proj.weight = original_layer.o_proj.weight
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(self,
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = self.repeat_kv(key, module.num_key_value_groups)
value_states = self.repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(self, x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (self.rotate_half(q) * sin)
k_embed = (k * cos) + (self.rotate_half(k) * sin)
return q_embed, k_embed
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
# Apply rotary embeddings
cos, sin = position_embeddings
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# 🔄 **Modify the Attention Mask**
seq_len = hidden_states.shape[1]
batch_size = hidden_states.shape[0]
if self.masking == 'bidirectional':
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
elif self.masking == 'bidirectional_masked':
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
base_mask[:, 1:].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
else: # unidirectional
# 🚀 Standard autoregressive (causal) mask
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool))
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
# Call the default attention function
attn_output, attn_weights = self.eager_attention_forward(
self,
query_states,
key_states,
value_states,
attn_mask, # ✅ Custom mask is applied here
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(*new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
class CustomTransformerConfig(PretrainedConfig):
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.prediction_chunk = prediction_chunk
self.max_position_embeddings = max_position_embeddings
self.input_size = prediction_chunk
class CustomTransformerModel(PreTrainedModel):
config_class = CustomTransformerConfig
def __init__(self, config):
super().__init__(config)
# Load pre-trained Llama model (excluding its original lm_head)
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token)
self.llama.resize_token_embeddings(config.vocab_size)
for i, layer in enumerate(self.llama.model.layers):
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
# Freeze Llama to retain pre-trained knowledge
for param in self.llama.parameters():
param.requires_grad = False
for param in self.llama.lm_head.parameters():
param.requires_grad = True
lora_config = LoraConfig(
r=256,
lora_alpha=256,
lora_dropout=0.0,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules
bias="none",
task_type=None
)
self.llama = get_peft_model(self.llama, lora_config)
self.llama.print_trainable_parameters() # Print number of trainable parameters
self.llama = self.llama.to(torch.float16)
def forward(self, input_ids, labels=None, **kwargs):
batch_size, seq_length = input_ids.shape
assert seq_length == self.input_size, f"Expected input length input_size, got {seq_length}"
with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage
outputs = self.llama(input_ids, output_hidden_states=True, **kwargs)
logits = outputs.logits[:,:,:self.config.vocab_size]
# Reshape logits to (batch, input_size, vocab_size)
logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size)
loss = None
if labels is not None:
assert labels.shape == (batch_size, self.input_size), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}"
# Compute loss
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
def disable_dropout(model):
for name, module in model.named_modules():
if isinstance(module, nn.Dropout):
setattr(model, name, nn.Identity())
return model