Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig | |
from transformers.models.llama.modeling_llama import LlamaAttention | |
from torch.amp import autocast | |
from peft import LoraConfig, get_peft_model | |
from typing import Optional, Tuple | |
import torch | |
import os | |
hf_token = os.getenv("HF_TOKEN") | |
class BidirectionalLlamaAttention(LlamaAttention): | |
def __init__(self, original_layer, masking = 'unidirectional'): | |
super().__init__(original_layer.config, layer_idx=original_layer.layer_idx) | |
self.masking = masking | |
# Copy weights from original layer | |
self.q_proj.weight = original_layer.q_proj.weight | |
self.k_proj.weight = original_layer.k_proj.weight | |
self.v_proj.weight = original_layer.v_proj.weight | |
self.o_proj.weight = original_layer.o_proj.weight | |
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def eager_attention_forward(self, | |
module: nn.Module, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
attention_mask: Optional[torch.Tensor], | |
scaling: float, | |
dropout: float = 0.0, | |
**kwargs, | |
): | |
key_states = self.repeat_kv(key, module.num_key_value_groups) | |
value_states = self.repeat_kv(value, module.num_key_value_groups) | |
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
if attention_mask is not None: | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
return attn_output, attn_weights | |
def rotate_half(self, x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (self.rotate_half(q) * sin) | |
k_embed = (k * cos) + (self.rotate_half(k) * sin) | |
return q_embed, k_embed | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_embeddings: Tuple[torch.Tensor, torch.Tensor], | |
attention_mask: Optional[torch.Tensor], | |
past_key_value: Optional[torch.Tensor] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
): | |
input_shape = hidden_states.shape[:-1] | |
hidden_shape = (*input_shape, -1, self.head_dim) | |
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | |
# Apply rotary embeddings | |
cos, sin = position_embeddings | |
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# 🔄 **Modify the Attention Mask** | |
seq_len = hidden_states.shape[1] | |
batch_size = hidden_states.shape[0] | |
if self.masking == 'bidirectional': | |
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) | |
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
elif self.masking == 'bidirectional_masked': | |
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool) | |
base_mask[:, :].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D | |
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
else: # unidirectional | |
# 🚀 Standard autoregressive (causal) mask | |
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool)) | |
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch | |
# Call the default attention function | |
attn_output, attn_weights = self.eager_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attn_mask, # ✅ Custom mask is applied here | |
dropout=0.0 if not self.training else self.attention_dropout, | |
scaling=self.scaling, | |
**kwargs, | |
) | |
attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
attn_output = self.o_proj(attn_output) | |
return attn_output, attn_weights | |
def _split_heads(self, tensor, num_heads, attn_head_size): | |
""" | |
Splits hidden_size dim into attn_head_size and num_heads | |
""" | |
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | |
tensor = tensor.view(*new_shape) | |
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
def _merge_heads(self, tensor, num_heads, attn_head_size): | |
""" | |
Merges attn_head_size dim and num_attn_heads dim into hidden_size | |
""" | |
tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | |
return tensor.view(new_shape) | |
class CustomTransformerConfig(PretrainedConfig): | |
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.prediction_chunk = prediction_chunk | |
self.max_position_embeddings = max_position_embeddings | |
self.input_size = prediction_chunk | |
class CustomTransformerModel(PreTrainedModel): | |
config_class = CustomTransformerConfig | |
def __init__(self, config): | |
super().__init__(config) | |
# Load pre-trained Llama model (excluding its original lm_head) | |
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token) | |
self.llama.resize_token_embeddings(config.vocab_size) | |
for i, layer in enumerate(self.llama.model.layers): | |
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional_masked') | |
# Freeze Llama to retain pre-trained knowledge | |
for param in self.llama.parameters(): | |
param.requires_grad = False | |
for param in self.llama.lm_head.parameters(): | |
param.requires_grad = True | |
lora_config = LoraConfig( | |
r=512, | |
lora_alpha=512, | |
lora_dropout=0.0, | |
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules | |
bias="none", | |
task_type=None | |
) | |
self.llama = get_peft_model(self.llama, lora_config) | |
self.llama.print_trainable_parameters() # Print number of trainable parameters | |
self.llama = self.llama.to(torch.float16) | |
def forward(self, input_ids, labels=None, **kwargs): | |
batch_size, seq_length = input_ids.shape | |
assert seq_length == 256, f"Expected input length input_size, got {seq_length}" | |
with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage | |
outputs = self.llama(input_ids, output_hidden_states=True, **kwargs) | |
logits = outputs.logits[:,:,:self.config.vocab_size] | |
# Reshape logits to (batch, input_size, vocab_size) | |
logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size) | |
loss = None | |
if labels is not None: | |
assert labels.shape == (batch_size, 256), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}" | |
# Compute loss | |
loss_fct = torch.nn.CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} | |
def disable_dropout(model): | |
for name, module in model.named_modules(): | |
if isinstance(module, nn.Dropout): | |
setattr(model, name, nn.Identity()) | |
return model | |