Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,369 Bytes
7252f98 9aaa660 7252f98 9aaa660 7252f98 9aaa660 7252f98 9aaa660 7252f98 9aaa660 7252f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
import torch
import numpy as np
import json
import time
from transformers import AutoTokenizer
from llama_diffusion_model import disable_dropout
import os
import importlib
from huggingface_hub import hf_hub_download
hf_token = os.getenv("HF_TOKEN")
# --- Load tokenizer ---
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B", use_fast=True, token=hf_token)
vocab_size = len(tokenizer)
pad_token = tokenizer.pad_token_id or tokenizer.eos_token_id
eot_token_id = tokenizer.eos_token_id
assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False)
# --- Load token probabilities ---
with open("token_probabilities.json") as f:
token_probs_dict = json.load(f)
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32)
def load_model():
# 1. Download the checkpoint
checkpoint_path = hf_hub_download(
repo_id="ruurd/diffusion-llama",
filename="diffusion-model.pth",
token=os.getenv("HF_TOKEN")
)
# 2. Prepare dynamic class loading like you did before
torch.serialization.clear_safe_globals()
unsafe_globals = torch.serialization.get_unsafe_globals_in_checkpoint(checkpoint_path)
missing_class_names = [name.split(".")[-1] for name in unsafe_globals]
safe_classes = [cls for name, cls in globals().items() if name in missing_class_names]
for class_path in unsafe_globals:
try:
module_name, class_name = class_path.rsplit(".", 1)
module = importlib.import_module(module_name)
cls = getattr(module, class_name)
safe_classes.append(cls)
except (ImportError, AttributeError) as e:
print(f"⚠️ Warning: Could not import {class_path} - {e}")
torch.serialization.add_safe_globals(safe_classes)
# 3. Actually load the full model
model = torch.load(checkpoint_path, weights_only=True)
# 4. Final setup
model = disable_dropout(model)
model.to("cuda")
model.eval()
return model
rng = np.random.default_rng()
# --- Utility Functions ---
def decode_tokens_safe(token_ids):
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
def find_answer_start(input_ids, marker_ids):
for i in range(len(input_ids) - len(marker_ids) + 1):
if input_ids[i:i + len(marker_ids)] == marker_ids:
return i + len(marker_ids)
return None
def get_noising_schedule(i, max_it, sharpness=5.0):
x = i / max_it
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0):
noised = input_ids.copy()
answer_len = len(input_ids) - answer_start
num_to_noise = int(threshold * answer_len)
if num_to_noise > 0:
indices = rng.choice(np.arange(answer_start, len(input_ids)), size=num_to_noise, replace=False)
mixed_probs = token_probabilities.copy()
mixed_probs[eot_token_id] *= eot_weight
mixed_probs /= mixed_probs.sum()
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs)
for idx, val in zip(indices, noise):
noised[idx] = val
return noised
def generate_diffusion_text(model, input_ids, answer_start):
with torch.no_grad():
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
logits = model(input_ids=input_tensor)["logits"]
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze()
probs = torch.clamp(probs, min=1e-8, max=1.0)
sampled = torch.multinomial(probs, num_samples=1).squeeze().tolist()
return input_ids[:answer_start] + sampled[answer_start:]
# --- Inference Wrapper ---
def diffusion_chat(question, eot_weight, max_it, sharpness, model):
placeholder = "What do you know about the city of New York?"
if question.strip() == "":
question = placeholder
prompt = f"User: {question}\nAssistant:"
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
answer_start = find_answer_start(input_ids, assistant_marker_ids)
if answer_start is None:
yield "Error: Could not find Assistant marker in input."
return
if len(input_ids) < 256:
input_ids += [pad_token] * (256 - len(input_ids))
else:
input_ids = input_ids[:256]
ori_input_tokens = input_ids
current_tokens = noisify_answer(ori_input_tokens, answer_start, threshold=1.0, eot_weight=eot_weight)
prev_decoded_tokens = []
last_tokens = []
for i in range(max_it):
generated_tokens = generate_diffusion_text(model, current_tokens, answer_start)
current_tokens = generated_tokens
decoded_ids = current_tokens[answer_start:]
decoded_tokens = tokenizer.convert_ids_to_tokens(decoded_ids)
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
if filtered_prev_tokens:
highlighted = []
for tok_new, tok_old in zip(filtered_tokens, filtered_prev_tokens):
if tok_new != tok_old:
highlighted.append(f'<span style="color:green">{tokenizer.convert_tokens_to_string([tok_new])}</span>')
else:
highlighted.append(tokenizer.convert_tokens_to_string([tok_new]))
else:
highlighted = [tokenizer.convert_tokens_to_string([tok]) for tok in filtered_tokens]
prev_decoded_tokens = decoded_tokens
yield f"<b>Iteration {i+1}/{max_it} (running):</b><br>" + "".join(highlighted)
last_tokens.append(generated_tokens)
if len(last_tokens) > 3:
last_tokens.pop(0)
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
yield f"<b>Stopped early after {i+1} iterations.</b>"
break
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
current_tokens = noisify_answer(generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight)
time.sleep(0.01)
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
final_output = tokenizer.convert_tokens_to_string(final_tokens)
yield f"<b>Final Output (after {i+1} iterations):</b><br>" + final_output
# --- Gradio Interface ---
model_state = gr.State(load_model())
demo = gr.Interface(
fn=diffusion_chat,
inputs=[
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
model_state
],
outputs=gr.HTML(label="Diffusion Output"),
title="Diffusion Language Model Chat",
description="This interface runs a diffusion-based language model to generate answers progressively."
)
demo.launch()
|