Spaces:
Sleeping
Sleeping
File size: 11,017 Bytes
7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 0af2920 7252f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import torch.nn as nn
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
from transformers.models.llama.modeling_llama import LlamaAttention
from torch.amp import autocast
from peft import LoraConfig, get_peft_model
from typing import Optional, Tuple
import torch
import os
hf_token = os.getenv("HF_TOKEN")
class BidirectionalLlamaAttention(LlamaAttention):
def __init__(self, original_layer, masking = 'unidirectional'):
super().__init__(original_layer.config, layer_idx=original_layer.layer_idx)
self.masking = masking
# Copy weights from original layer
self.q_proj.weight = original_layer.q_proj.weight
self.k_proj.weight = original_layer.k_proj.weight
self.v_proj.weight = original_layer.v_proj.weight
self.o_proj.weight = original_layer.o_proj.weight
def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(self,
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = self.repeat_kv(key, module.num_key_value_groups)
value_states = self.repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(self, x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (self.rotate_half(q) * sin)
k_embed = (k * cos) + (self.rotate_half(k) * sin)
return q_embed, k_embed
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
# Apply rotary embeddings
cos, sin = position_embeddings
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# 🔄 **Modify the Attention Mask**
seq_len = hidden_states.shape[1]
batch_size = hidden_states.shape[0]
if self.masking == 'bidirectional':
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
elif self.masking == 'bidirectional_masked':
base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
base_mask[:, 1:].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
else: # unidirectional
# 🚀 Standard autoregressive (causal) mask
attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool))
attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
# Call the default attention function
attn_output, attn_weights = self.eager_attention_forward(
self,
query_states,
key_states,
value_states,
attn_mask, # ✅ Custom mask is applied here
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(*new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
class CustomTransformerConfig(PretrainedConfig):
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.prediction_chunk = prediction_chunk
self.max_position_embeddings = max_position_embeddings
self.input_size = prediction_chunk
class CustomTransformerModel(PreTrainedModel):
config_class = CustomTransformerConfig
def __init__(self, config):
super().__init__(config)
# Load pre-trained Llama model (excluding its original lm_head)
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token)
self.llama.resize_token_embeddings(config.vocab_size)
for i, layer in enumerate(self.llama.model.layers):
layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
# Freeze Llama to retain pre-trained knowledge
for param in self.llama.parameters():
param.requires_grad = False
for param in self.llama.lm_head.parameters():
param.requires_grad = True
lora_config = LoraConfig(
r=256,
lora_alpha=256,
lora_dropout=0.0,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules
bias="none",
task_type=None
)
self.llama = get_peft_model(self.llama, lora_config)
self.llama.print_trainable_parameters() # Print number of trainable parameters
self.llama = self.llama.to(torch.float16)
def forward(self, input_ids, labels=None, **kwargs):
batch_size, seq_length = input_ids.shape
assert seq_length == self.input_size, f"Expected input length input_size, got {seq_length}"
with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage
outputs = self.llama(input_ids, output_hidden_states=True, **kwargs)
logits = outputs.logits[:,:,:self.config.vocab_size]
# Reshape logits to (batch, input_size, vocab_size)
logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size)
loss = None
if labels is not None:
assert labels.shape == (batch_size, self.input_size), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}"
# Compute loss
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
def disable_dropout(model):
for name, module in model.named_modules():
if isinstance(module, nn.Dropout):
setattr(model, name, nn.Identity())
return model
|