Ruurd commited on
Commit
86a7aaf
·
1 Parent(s): 205d52f

Free to choose a model

Browse files
Files changed (1) hide show
  1. app.py +25 -50
app.py CHANGED
@@ -146,75 +146,50 @@ def format_prompt(messages):
146
  def add_user_message(user_input, history):
147
  return "", history + [{"role": "user", "content": user_input}]
148
 
149
- # Available models
150
  model_choices = [
151
  "meta-llama/Llama-3.2-3B-Instruct",
152
  "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
153
- "google/gemma-7b"
 
154
  ]
155
 
156
- # UI
157
  with gr.Blocks() as demo:
158
- gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")
159
-
160
- default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
161
-
162
- # @spaces.GPU
163
- # def chat_with_model(messages):
164
- # global current_model, current_tokenizer
165
- # if current_model is None or current_tokenizer is None:
166
- # yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
167
- # return
168
-
169
- # current_model = current_model.to("cuda").half()
170
-
171
- # prompt = format_prompt(messages)
172
- # inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
173
-
174
- # output_ids = []
175
- # messages = messages.copy()
176
- # messages.append({"role": "assistant", "content": ""})
177
-
178
- # for token_id in current_model.generate(
179
- # **inputs,
180
- # max_new_tokens=256,
181
- # do_sample=True,
182
- # return_dict_in_generate=True,
183
- # output_scores=False
184
- # ).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens
185
- # output_ids.append(token_id.item())
186
- # decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False)
187
- # if output_ids[-1] == current_tokenizer.eos_token_id:
188
- # current_model.to("cpu")
189
- # torch.cuda.empty_cache()
190
- # return
191
- # messages[-1]["content"] = decoded
192
- # yield messages
193
-
194
- # current_model.to("cpu")
195
- # torch.cuda.empty_cache()
196
- # return
197
 
198
  with gr.Row():
199
- model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
200
- model_status = gr.Textbox(label="Model Status", interactive=False)
 
201
 
 
202
  chatbot = gr.Chatbot(label="Chat", type="messages")
203
  msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
204
  clear = gr.Button("Clear")
205
 
206
- # Load default model on startup
 
 
 
207
  demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
208
 
209
- # Load selected model manually
210
- model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
 
 
 
 
 
 
 
 
211
 
212
- # Submit message + stream model response
213
  msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
214
  chat_with_model, chatbot, chatbot
215
  )
216
-
217
- # Clear chat
218
  clear.click(lambda: [], None, chatbot, queue=False)
219
 
 
220
  demo.launch()
 
146
  def add_user_message(user_input, history):
147
  return "", history + [{"role": "user", "content": user_input}]
148
 
149
+ # Curated models
150
  model_choices = [
151
  "meta-llama/Llama-3.2-3B-Instruct",
152
  "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
153
+ "google/gemma-7b",
154
+ "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
155
  ]
156
 
 
157
  with gr.Blocks() as demo:
158
+ gr.Markdown("## Clinical Chatbot (Streaming)")
159
+
160
+ default_model = gr.State(model_choices[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
  with gr.Row():
163
+ mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode")
164
+ model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model")
165
+ model_textbox = gr.Textbox(label="Or Enter HF Model Name")
166
 
167
+ model_status = gr.Textbox(label="Model Status", interactive=False)
168
  chatbot = gr.Chatbot(label="Chat", type="messages")
169
  msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
170
  clear = gr.Button("Clear")
171
 
172
+ def resolve_model_choice(mode, dropdown_value, textbox_value):
173
+ return textbox_value.strip() if mode == "Enter custom model" else dropdown_value
174
+
175
+ # Load on launch
176
  demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
177
 
178
+ # Load on user selection
179
+ mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
180
+ load_model_on_selection, inputs=default_model, outputs=model_status
181
+ )
182
+ model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
183
+ load_model_on_selection, inputs=default_model, outputs=model_status
184
+ )
185
+ model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
186
+ load_model_on_selection, inputs=default_model, outputs=model_status
187
+ )
188
 
 
189
  msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
190
  chat_with_model, chatbot, chatbot
191
  )
 
 
192
  clear.click(lambda: [], None, chatbot, queue=False)
193
 
194
+
195
  demo.launch()