Show loading bars
Browse files
app.py
CHANGED
@@ -15,24 +15,29 @@ import spaces
|
|
15 |
# Dictionary to store loaded models and tokenizers
|
16 |
loaded_models = {}
|
17 |
|
18 |
-
def load_model(model_name):
|
19 |
-
"""Load the model and tokenizer
|
20 |
if model_name not in loaded_models:
|
21 |
-
|
|
|
|
|
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
model_name, torch_dtype=torch.float16, device_map="auto"
|
24 |
)
|
|
|
25 |
loaded_models[model_name] = (tokenizer, model)
|
26 |
return loaded_models[model_name]
|
27 |
|
28 |
@spaces.GPU
|
29 |
-
def generate_text(model_name, prompt):
|
30 |
-
"""Generate text using the selected model."""
|
31 |
-
tokenizer, model = load_model(model_name)
|
32 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
33 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
34 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
|
|
|
36 |
# List of models to choose from
|
37 |
model_choices = [
|
38 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
@@ -40,7 +45,6 @@ model_choices = [
|
|
40 |
"google/gemma-7b"
|
41 |
]
|
42 |
|
43 |
-
# Gradio interface setup
|
44 |
with gr.Blocks() as demo:
|
45 |
gr.Markdown("## Clinical Text Analysis with Multiple Models")
|
46 |
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
|
@@ -51,3 +55,4 @@ with gr.Blocks() as demo:
|
|
51 |
analyze_button.click(fn=generate_text, inputs=[model_selector, input_text], outputs=output_text)
|
52 |
|
53 |
demo.launch()
|
|
|
|
15 |
# Dictionary to store loaded models and tokenizers
|
16 |
loaded_models = {}
|
17 |
|
18 |
+
def load_model(model_name, progress=gr.Progress()):
|
19 |
+
"""Load the model and tokenizer with a progress bar."""
|
20 |
if model_name not in loaded_models:
|
21 |
+
access_token = os.getenv("HF_TOKEN")
|
22 |
+
progress(0, desc="Initializing model loading...")
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
|
24 |
+
progress(0.5, desc="Tokenizer loaded. Loading model...")
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name, torch_dtype=torch.float16, device_map="auto", use_auth_token=access_token
|
27 |
)
|
28 |
+
progress(1, desc="Model loaded successfully.")
|
29 |
loaded_models[model_name] = (tokenizer, model)
|
30 |
return loaded_models[model_name]
|
31 |
|
32 |
@spaces.GPU
|
33 |
+
def generate_text(model_name, prompt, progress=gr.Progress()):
|
34 |
+
"""Generate text using the selected model with a loading indicator."""
|
35 |
+
tokenizer, model = load_model(model_name, progress)
|
36 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
37 |
outputs = model.generate(**inputs, max_new_tokens=256)
|
38 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
+
|
41 |
# List of models to choose from
|
42 |
model_choices = [
|
43 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
|
|
45 |
"google/gemma-7b"
|
46 |
]
|
47 |
|
|
|
48 |
with gr.Blocks() as demo:
|
49 |
gr.Markdown("## Clinical Text Analysis with Multiple Models")
|
50 |
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
|
|
|
55 |
analyze_button.click(fn=generate_text, inputs=[model_selector, input_text], outputs=output_text)
|
56 |
|
57 |
demo.launch()
|
58 |
+
|