radiolm / app.py
Ruurd's picture
Put model on GPU
f6e6d69
raw
history blame
2.11 kB
import os
import torch
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM
# Use a global variable to hold the current model and tokenizer
current_model = None
current_tokenizer = None
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cuda",
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
@spaces.GPU
def generate_text(prompt):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
return "⚠️ No model loaded yet. Please select a model first."
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
outputs = current_model.generate(**inputs, max_new_tokens=256)
return current_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Model options
model_choices = [
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"meta-llama/Llama-3.2-3B-Instruct",
"google/gemma-7b"
]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Clinical Text Testing with LLaMA, DeepSeek, and Gemma")
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
input_text = gr.Textbox(label="Input Clinical Text")
output_text = gr.Textbox(label="Generated Output")
generate_btn = gr.Button("Generate")
# Load model on dropdown change
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
# Generate with current model
generate_btn.click(fn=generate_text, inputs=input_text, outputs=output_text)
demo.launch()