|
import os |
|
import torch |
|
import gradio as gr |
|
import spaces |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
current_model = None |
|
current_tokenizer = None |
|
|
|
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)): |
|
global current_model, current_tokenizer |
|
token = os.getenv("HF_TOKEN") |
|
|
|
progress(0, desc="Loading tokenizer...") |
|
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) |
|
|
|
progress(0.5, desc="Loading model...") |
|
current_model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="cuda", |
|
use_auth_token=token |
|
) |
|
|
|
progress(1, desc="Model ready.") |
|
return f"{model_name} loaded and ready!" |
|
|
|
@spaces.GPU |
|
def generate_text(prompt): |
|
global current_model, current_tokenizer |
|
if current_model is None or current_tokenizer is None: |
|
return "⚠️ No model loaded yet. Please select a model first." |
|
|
|
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device) |
|
outputs = current_model.generate(**inputs, max_new_tokens=256) |
|
return current_tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
model_choices = [ |
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B", |
|
"meta-llama/Llama-3.2-3B-Instruct", |
|
"google/gemma-7b" |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Clinical Text Testing with LLaMA, DeepSeek, and Gemma") |
|
|
|
model_selector = gr.Dropdown(choices=model_choices, label="Select Model") |
|
model_status = gr.Textbox(label="Model Status", interactive=False) |
|
|
|
input_text = gr.Textbox(label="Input Clinical Text") |
|
output_text = gr.Textbox(label="Generated Output") |
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
|
|
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status) |
|
|
|
|
|
generate_btn.click(fn=generate_text, inputs=input_text, outputs=output_text) |
|
|
|
demo.launch() |
|
|