File size: 9,243 Bytes
65d5ebe 0040338 4f67864 0040338 65d5ebe 4f67864 0040338 0ebe852 0040338 65d5ebe 0040338 5968a97 0040338 5968a97 0040338 5968a97 0040338 869001f 0040338 3045f29 0040338 5968a97 0ebe852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import torch
import time
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading
import queue
class RichTextStreamer(TextIteratorStreamer):
def __init__(self, tokenizer, prompt_len=0, **kwargs):
super().__init__(tokenizer, **kwargs)
self.token_queue = queue.Queue()
self.prompt_len = prompt_len
self.count = 0
def put(self, value):
if isinstance(value, torch.Tensor):
token_ids = value.view(-1).tolist()
elif isinstance(value, list):
token_ids = value
else:
token_ids = [value]
for token_id in token_ids:
self.count += 1
if self.count <= self.prompt_len:
continue # skip prompt tokens
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
is_special = token_id in self.tokenizer.all_special_ids
self.token_queue.put({
"token_id": token_id,
"token": token_str,
"is_special": is_special
})
def __iter__(self):
while True:
try:
token_info = self.token_queue.get(timeout=self.timeout)
yield token_info
except queue.Empty:
if self.end_of_generation.is_set():
break
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading
from transformers import TextIteratorStreamer
import threading
from transformers import TextIteratorStreamer
import queue
class RichTextStreamer(TextIteratorStreamer):
def __init__(self, tokenizer, prompt_len=0, **kwargs):
super().__init__(tokenizer, **kwargs)
self.token_queue = queue.Queue()
self.prompt_len = prompt_len
self.count = 0
def put(self, value):
if isinstance(value, torch.Tensor):
token_ids = value.view(-1).tolist()
elif isinstance(value, list):
token_ids = value
else:
token_ids = [value]
for token_id in token_ids:
self.count += 1
if self.count <= self.prompt_len:
continue # skip prompt tokens
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
is_special = token_id in self.tokenizer.all_special_ids
self.token_queue.put({
"token_id": token_id,
"token": token_str,
"is_special": is_special
})
def __iter__(self):
while True:
try:
token_info = self.token_queue.get(timeout=self.timeout)
yield token_info
except queue.Empty:
if self.end_of_generation.is_set():
break
@spaces.GPU
def chat_with_model(messages):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
return
pad_id = current_tokenizer.pad_token_id
eos_id = current_tokenizer.eos_token_id
if pad_id is None:
pad_id = current_tokenizer.unk_token_id or 0
output_text = ""
in_think = False
max_new_tokens = 1024
generated_tokens = 0
prompt = format_prompt(messages)
device = torch.device("cuda")
current_model.to(device).half()
# 1. Tokenize prompt
inputs = current_tokenizer(prompt, return_tensors="pt").to(device)
prompt_len = inputs["input_ids"].shape[-1]
# 2. Init streamer with prompt_len
streamer = RichTextStreamer(
tokenizer=current_tokenizer,
prompt_len=prompt_len,
skip_special_tokens=False
)
# 3. Build generation kwargs
generation_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
streamer=streamer,
eos_token_id=eos_id,
pad_token_id=pad_id
)
# 4. Launch generation in a thread
thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
thread.start()
messages = messages.copy()
messages.append({"role": "assistant", "content": ""})
print(f'Step 1: {messages}')
prompt_text = current_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=False)
for token_info in streamer:
token_str = token_info["token"]
token_id = token_info["token_id"]
is_special = token_info["is_special"]
# Stop immediately at EOS
if token_id == eos_id:
break
# Detect reasoning block
if "<think>" in token_str:
in_think = True
token_str = token_str.replace("<think>", "")
output_text += "*"
if "</think>" in token_str:
in_think = False
token_str = token_str.replace("</think>", "")
output_text += token_str + "*"
else:
output_text += token_str
# Early stopping if user reappears
if "\nUser" in output_text:
output_text = output_text.split("\nUser")[0].rstrip()
messages[-1]["content"] = output_text
break
generated_tokens += 1
if generated_tokens >= max_new_tokens:
break
messages[-1]["content"] = output_text
print(f'Step 2: {messages}')
yield messages
if in_think:
output_text += "*"
messages[-1]["content"] = output_text
# Wait for thread to finish
# current_model.to("cpu")
torch.cuda.empty_cache()
messages[-1]["content"] = output_text
print(f'Step 3: {messages}')
return messages
# Globals
current_model = None
current_tokenizer = None
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu", # loaded to CPU initially
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Format conversation as plain text
def format_prompt(messages):
prompt = ""
for msg in messages:
role = msg["role"]
if role == "user":
prompt += f"User: {msg['content'].strip()}\n"
elif role == "assistant":
prompt += f"Assistant: {msg['content'].strip()}\n"
prompt += "Assistant:"
return prompt
def add_user_message(user_input, history):
return "", history + [{"role": "user", "content": user_input}]
# Curated models
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b",
"mistralai/Mistral-Small-3.1-24B-Instruct-2503"
]
with gr.Blocks() as demo:
gr.Markdown("## Clinical Chatbot (Streaming)")
default_model = gr.State(model_choices[0])
with gr.Row():
mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode")
model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model")
model_textbox = gr.Textbox(label="Or Enter HF Model Name")
model_status = gr.Textbox(label="Model Status", interactive=False)
chatbot = gr.Chatbot(label="Chat", type="messages")
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
def resolve_model_choice(mode, dropdown_value, textbox_value):
return textbox_value.strip() if mode == "Enter custom model" else dropdown_value
# Load on launch
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
# Model selection logic
mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
# Submit via enter key or button
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
chat_with_model, chatbot, chatbot
)
submit_btn.click(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
chat_with_model, chatbot, chatbot
)
clear_btn.click(lambda: [], None, chatbot, queue=False)
demo.launch()
|