Spaces:
Build error
Build error
File size: 25,229 Bytes
18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 f0d60d1 18a68e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
import streamlit as st
import pandas as pd
import os
import tempfile
from typing import List, Optional, Dict, Any, Union
import json
from datetime import datetime
from llama_cpp import Llama
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage, SystemMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.vectorstores import Chroma # Fixed import
from pydantic import BaseModel, Field
from Ingestion.ingest import process_document, get_processor_for_file
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
# Set page configuration
st.set_page_config(
page_title="DocMind AI: AI-Powered Document Analysis",
page_icon="🧠",
layout="wide",
initial_sidebar_state="expanded",
)
# Custom CSS for better dark/light mode compatibility
st.markdown("""
<style>
/* Common styles for both modes */
.stApp {
max-width: 1200px;
margin: 0 auto;
}
/* Card styling for results */
.card {
border-radius: 5px;
padding: 1.5rem;
margin-bottom: 1rem;
border: 1px solid rgba(128, 128, 128, 0.2);
}
/* Dark mode specific */
@media (prefers-color-scheme: dark) {
.card {
background-color: rgba(255, 255, 255, 0.05);
}
.highlight-container {
background-color: rgba(255, 255, 255, 0.05);
border-left: 3px solid #4CAF50;
}
.chat-user {
background-color: rgba(0, 0, 0, 0.2);
}
.chat-ai {
background-color: rgba(76, 175, 80, 0.1);
}
}
/* Light mode specific */
@media (prefers-color-scheme: light) {
.card {
background-color: rgba(0, 0, 0, 0.02);
}
.highlight-container {
background-color: rgba(0, 0, 0, 0.03);
border-left: 3px solid #4CAF50;
}
.chat-user {
background-color: rgba(240, 240, 240, 0.7);
}
.chat-ai {
background-color: rgba(76, 175, 80, 0.05);
}
}
/* Chat message styling */
.chat-container {
margin-bottom: 1rem;
}
.chat-message {
padding: 1rem;
border-radius: 5px;
margin-bottom: 0.5rem;
}
/* Highlight sections */
.highlight-container {
padding: 1rem;
margin: 1rem 0;
border-radius: 4px;
}
/* Status indicators */
.status-success {
color: #4CAF50;
}
.status-error {
color: #F44336;
}
/* Document list */
.doc-list {
list-style-type: none;
padding-left: 0;
}
.doc-list li {
padding: 0.5rem 0;
border-bottom: 1px solid rgba(128, 128, 128, 0.2);
}
</style>
""", unsafe_allow_html=True)
# Define the output structures using Pydantic
class DocumentAnalysis(BaseModel):
summary: str = Field(description="A concise summary of the document")
key_insights: List[str] = Field(description="A list of key insights from the document")
action_items: Optional[List[str]] = Field(None, description="A list of action items derived from the document")
open_questions: Optional[List[str]] = Field(None, description="A list of open questions or areas needing clarification")
# Function to clean up LLM responses for better parsing
def clean_llm_response(response):
"""Clean up the LLM response to extract JSON content from potential markdown code blocks."""
# Extract content from the response
if isinstance(response, dict) and 'choices' in response:
content = response['choices'][0]['message']['content']
else:
content = str(response)
# Remove markdown code block formatting if present
if '```' in content:
# Handle ```json format
parts = content.split('```')
if len(parts) >= 3: # Has opening and closing backticks
# Take the content between first pair of backticks
content = parts[1]
# Remove json language specifier if present
if content.startswith('json') or content.startswith('JSON'):
content = content[4:].lstrip()
elif '`json' in content:
# Handle `json format
parts = content.split('`json')
if len(parts) >= 2:
content = parts[1]
if '`' in content:
content = content.split('`')[0]
# Strip any leading/trailing whitespace
content = content.strip()
return content
# Initialize LLM without widgets in the cached function
@st.cache_resource
def load_model():
try:
llm = Llama.from_pretrained(
repo_id="stduhpf/google-gemma-3-1b-it-qat-q4_0-gguf-small",
filename="gemma-3-1b-it-q4_0_s.gguf",
)
return llm
except Exception as e:
return None
# Initialize embeddings without widgets in the cached function
@st.cache_resource
def load_embeddings():
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'}
)
return embeddings
# Sidebar Configuration with improved styling
st.sidebar.markdown("<div style='text-align: center;'><h1>🧠 DocMind AI</h1></div>", unsafe_allow_html=True)
st.sidebar.markdown("<div style='text-align: center;'>AI-Powered Document Analysis</div>", unsafe_allow_html=True)
st.sidebar.markdown("---")
# Load LLM - Move spinner outside the cached function
with st.sidebar:
with st.spinner("Loading model..."):
llm = load_model()
if llm is not None:
st.markdown("<div class='status-success'>✅ Model loaded successfully!</div>", unsafe_allow_html=True)
else:
st.markdown("<div class='status-error'>❌ Error loading model. Check logs for details.</div>", unsafe_allow_html=True)
st.stop()
# Mode Selection
with st.sidebar:
st.markdown("### Analysis Configuration")
analysis_mode = st.radio(
"Analysis Mode",
["Analyze each document separately", "Combine analysis for all documents"]
)
# Prompt Selection
prompt_options = {
"Comprehensive Document Analysis": "Analyze the provided document comprehensively. Generate a summary, extract key insights, identify action items, and list open questions.",
"Extract Key Insights and Action Items": "Extract key insights and action items from the provided document.",
"Summarize and Identify Open Questions": "Summarize the provided document and identify any open questions that need clarification.",
"Custom Prompt": "Enter a custom prompt below:"
}
with st.sidebar:
st.markdown("### Prompt Settings")
selected_prompt_option = st.selectbox("Select Prompt", list(prompt_options.keys()))
custom_prompt = ""
if selected_prompt_option == "Custom Prompt":
custom_prompt = st.text_area("Enter Custom Prompt", height=100)
# Tone Selection
tone_options = [
"Professional", "Academic", "Informal", "Creative", "Neutral",
"Direct", "Empathetic", "Humorous", "Authoritative", "Inquisitive"
]
with st.sidebar:
selected_tone = st.selectbox("Select Tone", tone_options)
# Instructions Selection
instruction_options = {
"General Assistant": "Act as a helpful assistant.",
"Researcher": "Act as a researcher providing in-depth analysis.",
"Software Engineer": "Act as a software engineer focusing on code and technical details.",
"Product Manager": "Act as a product manager considering strategy and user experience.",
"Data Scientist": "Act as a data scientist emphasizing data analysis.",
"Business Analyst": "Act as a business analyst considering strategic aspects.",
"Technical Writer": "Act as a technical writer creating clear documentation.",
"Marketing Specialist": "Act as a marketing specialist focusing on branding.",
"HR Manager": "Act as an HR manager considering people aspects.",
"Legal Advisor": "Act as a legal advisor providing legal perspective.",
"Custom Instructions": "Enter custom instructions below:"
}
with st.sidebar:
st.markdown("### Assistant Behavior")
selected_instruction = st.selectbox("Select Instructions", list(instruction_options.keys()))
custom_instruction = ""
if selected_instruction == "Custom Instructions":
custom_instruction = st.text_area("Enter Custom Instructions", height=100)
# Length/Detail Selection
length_options = ["Concise", "Detailed", "Comprehensive", "Bullet Points"]
with st.sidebar:
st.markdown("### Response Format")
selected_length = st.selectbox("Select Length/Detail", length_options)
# Main Area
st.markdown("<h1 style='text-align: center;'>📄 DocMind AI: Document Analysis</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>Upload documents and analyze them using the Gemma model</p>", unsafe_allow_html=True)
# File Upload with improved UI
uploaded_files = st.file_uploader(
"Upload Documents",
accept_multiple_files=True,
type=["pdf", "docx", "txt", "xlsx", "md", "json", "xml", "rtf", "csv", "msg", "pptx", "odt", "epub",
"py", "js", "java", "ts", "tsx", "c", "cpp", "h", "html", "css", "sql", "rb", "go", "rs", "php"]
)
# Display uploaded files with better visual indication
if uploaded_files:
st.markdown("<div class='highlight-container'>", unsafe_allow_html=True)
st.markdown("### Uploaded Documents")
st.markdown("<ul class='doc-list'>", unsafe_allow_html=True)
for file in uploaded_files:
st.markdown(f"<li>📄 {file.name}</li>", unsafe_allow_html=True)
st.markdown("</ul>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Function to process the documents and run analysis
def run_analysis():
if not uploaded_files:
st.error("Please upload at least one document.")
return
# Save uploaded files to temporary directory
temp_dir = tempfile.mkdtemp()
file_paths = []
for uploaded_file in uploaded_files:
file_path = os.path.join(temp_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
file_paths.append(file_path)
# Process documents
with st.spinner("Processing documents..."):
all_texts = []
processed_docs = []
progress_bar = st.progress(0)
for i, file_path in enumerate(file_paths):
processor = get_processor_for_file(file_path)
if processor:
try:
doc_data = process_document(file_path)
if doc_data is not None and len(doc_data.strip()) > 0: # Ensure we have content
all_texts.append(doc_data)
processed_docs.append({"name": os.path.basename(file_path), "data": doc_data})
except Exception as e:
st.error(f"Error processing {os.path.basename(file_path)}: {str(e)}")
progress_bar.progress((i + 1) / len(file_paths))
if not all_texts:
st.error("No documents could be processed. Please check the file formats and try again.")
return
# Build the prompt
if selected_prompt_option == "Custom Prompt":
prompt_text = custom_prompt
else:
prompt_text = prompt_options[selected_prompt_option]
if selected_instruction == "Custom Instructions":
instruction_text = custom_instruction
else:
instruction_text = instruction_options[selected_instruction]
# Add tone guidance
tone_guidance = f"Use a {selected_tone.lower()} tone in your response."
# Add length guidance
length_guidance = ""
if selected_length == "Concise":
length_guidance = "Keep your response brief and to the point."
elif selected_length == "Detailed":
length_guidance = "Provide a detailed response with thorough explanations."
elif selected_length == "Comprehensive":
length_guidance = "Provide a comprehensive in-depth analysis covering all aspects."
elif selected_length == "Bullet Points":
length_guidance = "Format your response primarily using bullet points for clarity."
# Set up the output parser
output_parser = PydanticOutputParser(pydantic_object=DocumentAnalysis)
format_instructions = output_parser.get_format_instructions()
if analysis_mode == "Analyze each document separately":
results = []
for doc in processed_docs:
with st.spinner(f"Analyzing {doc['name']}..."):
# Create system message with combined instructions
system_message = f"{instruction_text} {tone_guidance} {length_guidance} Format your response according to these instructions: {format_instructions}"
prompt = f"""
{prompt_text}
Document: {doc['name']}
Content: {doc['data']}
"""
# Get response from LLM
try:
response = llm.create_chat_completion(
messages = [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": prompt
}
]
)
# Try to parse the response into the pydantic model
try:
# Clean the response before parsing
cleaned_response = clean_llm_response(response)
parsed_response = output_parser.parse(cleaned_response)
results.append({
"document_name": doc['name'],
"analysis": parsed_response.dict()
})
except Exception as e:
# If parsing fails, include the raw response
if isinstance(response, dict) and 'choices' in response:
raw_response = response['choices'][0]['message']['content']
else:
raw_response = str(response)
results.append({
"document_name": doc['name'],
"analysis": raw_response,
"parsing_error": str(e)
})
except Exception as e:
st.error(f"Error analyzing {doc['name']}: {str(e)}")
# Display results with card-based UI
for result in results:
st.markdown(f"<div class='card'>", unsafe_allow_html=True)
st.markdown(f"<h3>Analysis for: {result['document_name']}</h3>", unsafe_allow_html=True)
if isinstance(result['analysis'], dict) and 'parsing_error' not in result:
# Structured output
st.markdown("<div class='highlight-container'>", unsafe_allow_html=True)
st.markdown("### Summary")
st.write(result['analysis']['summary'])
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("### Key Insights")
for insight in result['analysis']['key_insights']:
st.markdown(f"- {insight}")
if result['analysis'].get('action_items'):
st.markdown("<div class='highlight-container'>", unsafe_allow_html=True)
st.markdown("### Action Items")
for item in result['analysis']['action_items']:
st.markdown(f"- {item}")
st.markdown("</div>", unsafe_allow_html=True)
if result['analysis'].get('open_questions'):
st.markdown("### Open Questions")
for question in result['analysis']['open_questions']:
st.markdown(f"- {question}")
else:
# Raw output
st.markdown(result['analysis'])
if 'parsing_error' in result:
st.info(f"Note: The response could not be parsed into the expected format. Error: {result['parsing_error']}")
st.markdown("</div>", unsafe_allow_html=True)
else:
with st.spinner("Analyzing all documents together..."):
# Combine all documents
combined_content = "\n\n".join([f"Document: {doc['name']}\n\nContent: {doc['data']}" for doc in processed_docs])
# Create system message with combined instructions
system_message = f"{instruction_text} {tone_guidance} {length_guidance} Format your response according to these instructions: {format_instructions}"
# Create the prompt template for HuggingFace models
prompt = f"""
{prompt_text}
{combined_content}
"""
# Get response from LLM
try:
response = llm.create_chat_completion(
messages = [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": prompt
}
]
)
# Try to parse the response into the pydantic model
try:
# Clean the response before parsing
cleaned_response = clean_llm_response(response)
parsed_response = output_parser.parse(cleaned_response)
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h3>Combined Analysis for All Documents</h3>", unsafe_allow_html=True)
st.markdown("<div class='highlight-container'>", unsafe_allow_html=True)
st.markdown("### Summary")
st.write(parsed_response.summary)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("### Key Insights")
for insight in parsed_response.key_insights:
st.markdown(f"- {insight}")
if parsed_response.action_items:
st.markdown("<div class='highlight-container'>", unsafe_allow_html=True)
st.markdown("### Action Items")
for item in parsed_response.action_items:
st.markdown(f"- {item}")
st.markdown("</div>", unsafe_allow_html=True)
if parsed_response.open_questions:
st.markdown("### Open Questions")
for question in parsed_response.open_questions:
st.markdown(f"- {question}")
st.markdown("</div>", unsafe_allow_html=True)
except Exception as e:
# If parsing fails, return the raw response
st.markdown("<div class='card'>", unsafe_allow_html=True)
st.markdown("<h3>Combined Analysis for All Documents</h3>", unsafe_allow_html=True)
# Get raw content from response
if isinstance(response, dict) and 'choices' in response:
raw_response = response['choices'][0]['message']['content']
else:
raw_response = str(response)
st.markdown(raw_response)
st.info(f"Note: The response could not be parsed into the expected format. Error: {str(e)}")
st.markdown("</div>", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error analyzing documents: {str(e)}")
# Create text chunks for embeddings
with st.spinner("Setting up document chat..."):
try:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
all_chunks = []
for doc in processed_docs:
if doc['data'] and len(doc['data'].strip()) > 0: # Verify data exists and is not empty
chunks = text_splitter.split_text(doc['data'])
all_chunks.extend(chunks)
# Only create embeddings if we have chunks
if all_chunks and len(all_chunks) > 0:
# Load embeddings - moving spinner outside
embeddings = load_embeddings()
# Using 'None' as namespace to avoid unique ID issues with Chroma
vectorstore = Chroma.from_texts(
texts=all_chunks,
embedding=embeddings,
collection_name="docmind_collection",
collection_metadata={"timestamp": datetime.now().isoformat()}
)
retriever = vectorstore.as_retriever()
# Set up conversation memory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
# Create conversational chain
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory
)
st.session_state['qa_chain'] = qa_chain
st.session_state['chat_history'] = []
st.success("Document chat is ready! Ask questions about your documents below.")
else:
st.warning("No text chunks were created from the documents. Chat functionality is unavailable.")
except Exception as e:
st.error(f"Error setting up document chat: {str(e)}")
# For debugging purposes
st.exception(e)
# Initialize chat history
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
# Chat Interface with improved styling
st.markdown("---")
st.markdown("<h2 style='text-align: center;'>💬 Chat with your Documents</h2>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>Ask follow-up questions about the analyzed documents.</p>", unsafe_allow_html=True)
# Process the analysis if button is clicked
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if st.button("Extract and Analyze", use_container_width=True):
run_analysis()
# Chat input and display
if 'qa_chain' in st.session_state:
st.markdown("<div class='card'>", unsafe_allow_html=True)
user_question = st.text_input("Ask a question about your documents:")
if user_question:
with st.spinner("Generating response..."):
try:
response = st.session_state['qa_chain'].invoke({"question": user_question})
st.session_state['chat_history'].append({"question": user_question, "answer": response['answer']})
except Exception as e:
st.error(f"Error generating response: {str(e)}")
# Display chat history with improved styling
for exchange in st.session_state['chat_history']:
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
st.markdown(f"<div class='chat-message chat-user'><strong>You:</strong> {exchange['question']}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='chat-message chat-ai'><strong>DocMind AI:</strong> {exchange['answer']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Footer
st.markdown("---")
st.markdown(
"""
<div style="text-align: center">
<p>Built with ❤️ using Streamlit, LangChain, and Gemma model</p>
<p>DocMind AI - AI-Powered Document Analysis</p>
</div>
""",
unsafe_allow_html=True
) |