Ronaldo1111 commited on
Commit
a62cfca
·
verified ·
1 Parent(s): 6613346

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +151 -0
  2. requirements.txt +6 -0
  3. wxid_818dcjgh2rie12_0_7235.json +0 -0
app.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer
2
+ from langchain.vectorstores import FAISS
3
+ from langchain.docstore.document import Document
4
+ import faiss
5
+ import numpy as np
6
+ import json
7
+
8
+ # 加载对话内容
9
+ file_path = r"C:\Users\Administrator\Downloads\wxdump_work\export\wxid_x7etd588hufg12\json\wxid_818dcjgh2rie12\wxid_818dcjgh2rie12_0_7235.json"
10
+ try:
11
+ with open(file_path, 'r', encoding='utf-8') as f:
12
+ chunks = json.load(f)
13
+ except FileNotFoundError:
14
+ print(f"File not found: {file_path}")
15
+ exit()
16
+ except json.JSONDecodeError:
17
+ print(f"Error decoding JSON from file: {file_path}")
18
+ exit()
19
+
20
+ # 假设每个 chunk 是一个字典,并且包含一个 'text' 键,存储实际的对话文本
21
+ docs = [Document(page_content=chunk.get('text', '')) for chunk in chunks]
22
+
23
+ # 加载嵌入模型
24
+ model = SentenceTransformer("BAAI/bge-base-zh")
25
+ embeddings = model.encode([doc.page_content for doc in docs], show_progress_bar=True)
26
+
27
+ # 构建 FAISS 索引
28
+ dimension = embeddings.shape[1]
29
+ index = faiss.IndexFlatL2(dimension)
30
+ index.add(np.array(embeddings))
31
+
32
+ # 构建 LangChain 兼容的 VectorStore
33
+ from langchain.docstore.in_memory import InMemoryDocstore
34
+ from langchain_community.embeddings import HuggingFaceEmbeddings
35
+
36
+ index_to_docstore_id = {i: str(i) for i in range(len(docs))}
37
+ docstore = {str(i): doc for i, doc in enumerate(docs)}
38
+
39
+ vectorstore = FAISS(
40
+ embedding_function=HuggingFaceEmbeddings(model_name='BAAI/bge-base-zh').embed_query,
41
+ index=index,
42
+ docstore=InMemoryDocstore(docstore),
43
+ index_to_docstore_id=index_to_docstore_id
44
+ )
45
+
46
+ # 构建 Retriever
47
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
48
+ from sentence_transformers import SentenceTransformer
49
+ from langchain.vectorstores import FAISS
50
+ from langchain.docstore.document import Document
51
+ import faiss
52
+ import numpy as np
53
+ import json
54
+
55
+ # 加载对话内容
56
+ with open('wechat_chunks.json', 'r', encoding='utf-8') as f:
57
+ chunks = json.load(f)
58
+
59
+ docs = [Document(page_content=chunk) for chunk in chunks]
60
+
61
+ # 加载嵌入模型
62
+ model = SentenceTransformer("BAAI/bge-base-zh")
63
+ embeddings = model.encode([doc.page_content for doc in docs], show_progress_bar=True)
64
+
65
+ # 构建 FAISS 索引
66
+ dimension = embeddings.shape[1]
67
+ index = faiss.IndexFlatL2(dimension)
68
+ index.add(np.array(embeddings))
69
+
70
+ # 构建 LangChain 兼容的 VectorStore
71
+ from langchain.docstore.in_memory import InMemoryDocstore
72
+ from langchain_community.embeddings import HuggingFaceEmbeddings
73
+
74
+ index_to_docstore_id = {i: str(i) for i in range(len(docs))}
75
+ docstore = {str(i): doc for i, doc in enumerate(docs)}
76
+
77
+ vectorstore = FAISS(
78
+ embedding_function=HuggingFaceEmbeddings(model_name='BAAI/bge-base-zh').embed_query,
79
+ index=index,
80
+ docstore=InMemoryDocstore(docstore),
81
+ index_to_docstore_id=index_to_docstore_id
82
+ )
83
+
84
+ # 构建 Retriever
85
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
86
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
87
+ from langchain.llms import HuggingFacePipeline
88
+ from langchain.chains import ConversationalRetrievalChain
89
+ from langchain.memory import ConversationBufferMemory
90
+ from langchain.prompts import PromptTemplate
91
+
92
+ # 加载模型
93
+ model_name = "Qwen/Qwen1.5-0.5B-Chat"
94
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
95
+ model = AutoModelForCausalLM.from_pretrained(model_name).eval()
96
+
97
+ # 构建生成管道
98
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
99
+ llm = HuggingFacePipeline(pipeline=pipe)
100
+
101
+ # 设置 prompt 模板
102
+ custom_prompt = PromptTemplate.from_template(
103
+ """
104
+ 你是一个可爱的微信好友,请模仿以下对话中的语气,特别是“对方”(即 is_sender = 0 的说话者)的说话风格。
105
+ 你的语气要俏皮、有点可爱、适度调侃,不要太正式。使用微信风格的口语表达,不用太长!
106
+
107
+ 以下是之前的微信聊天片段:
108
+ {context}
109
+
110
+ 现在我说:
111
+ {question}
112
+
113
+ 你应该怎么用这种风格来回复我?
114
+ """
115
+ )
116
+
117
+ # 构建多轮问答链
118
+ qa_chain = ConversationalRetrievalChain.from_llm(
119
+ llm=llm,
120
+ retriever=retriever,
121
+ memory=ConversationBufferMemory(return_messages=True),
122
+ combine_docs_chain_kwargs={"prompt": custom_prompt},
123
+ return_source_documents=False
124
+ )
125
+ import gradio as gr
126
+
127
+ # 聊天函数
128
+ def chat(user_input, history):
129
+ history = history or []
130
+ chat_history = [(q, a) for q, a in history]
131
+
132
+ result = qa_chain.invoke({"question": user_input, "chat_history": chat_history})
133
+ reply = result["answer"]
134
+ history.append((user_input, reply))
135
+ return history, history
136
+
137
+ # Gradio 页面设计
138
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
139
+ gr.Markdown("# 🎀 Sophia Chat Agent")
140
+ gr.Markdown("这是 **Sophia Jr**,来和笨笨认识一下吧!😄")
141
+
142
+ chatbot = gr.Chatbot()
143
+ msg = gr.Textbox(label="请输入你的话...", placeholder="跟 Sophia 聊聊吧", lines=2)
144
+ state = gr.State([])
145
+
146
+ send_btn = gr.Button("发送")
147
+
148
+ send_btn.click(chat, inputs=[msg, state], outputs=[chatbot, state])
149
+ msg.submit(chat, inputs=[msg, state], outputs=[chatbot, state])
150
+
151
+ demo.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio==4.15.0
2
+ transformers>=4.36.2
3
+ langchain>=0.1.0
4
+ sentence-transformers
5
+ faiss-cpu
6
+ huggingface-hub
wxid_818dcjgh2rie12_0_7235.json ADDED
The diff for this file is too large to render. See raw diff