Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +39 -34
- cleaned_dialog.json +0 -0
- requirements.txt +9 -7
app.py
CHANGED
@@ -11,17 +11,18 @@ from langchain_community.llms import HuggingFacePipeline
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
import gradio as gr
|
13 |
|
14 |
-
# Step 1:
|
15 |
-
file_path = "
|
16 |
with open(file_path, "r", encoding="utf-8") as f:
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
# Step 2: 构建向量库
|
23 |
embedding_model = SentenceTransformer("BAAI/bge-base-zh")
|
24 |
-
embeddings = embedding_model.encode(
|
25 |
|
26 |
dimension = embeddings.shape[1]
|
27 |
index = faiss.IndexFlatL2(dimension)
|
@@ -36,9 +37,9 @@ vectorstore = FAISS(
|
|
36 |
docstore=InMemoryDocstore(docstore),
|
37 |
index_to_docstore_id=index_to_docstore_id
|
38 |
)
|
39 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k":
|
40 |
|
41 |
-
# Step 3: 加载语言模型
|
42 |
model_name = "Qwen/Qwen1.5-1.8B-Chat"
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
44 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).half().cuda().eval()
|
@@ -47,11 +48,11 @@ pipe = pipeline(
|
|
47 |
"text-generation",
|
48 |
model=model,
|
49 |
tokenizer=tokenizer,
|
50 |
-
max_new_tokens=64,
|
51 |
temperature=0.8,
|
52 |
top_p=0.9,
|
53 |
do_sample=True,
|
54 |
-
repetition_penalty=1.2,
|
55 |
return_full_text=False,
|
56 |
eos_token_id=tokenizer.eos_token_id,
|
57 |
pad_token_id=tokenizer.pad_token_id,
|
@@ -59,68 +60,72 @@ pipe = pipeline(
|
|
59 |
|
60 |
llm = HuggingFacePipeline(pipeline=pipe)
|
61 |
|
62 |
-
# Step 4: Prompt 模板
|
63 |
system_prompt = (
|
64 |
"你是一个可爱的微信好友,语气要俏皮、有点可爱、适度调侃,不要太正式。"
|
65 |
-
"
|
66 |
)
|
67 |
|
68 |
prompt_template = PromptTemplate(
|
69 |
-
input_variables=["system", "context", "question"],
|
70 |
-
template="""
|
71 |
-
{system}
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
好友:在想你呀😚干嘛问我咩~
|
76 |
|
77 |
-
|
78 |
-
好友:刚吃完,还差你一口哈哈哈🍚
|
79 |
-
|
80 |
-
以下是之前的微信聊天片段:
|
81 |
{context}
|
82 |
|
83 |
现在我说:
|
84 |
{question}
|
85 |
|
86 |
-
|
87 |
"""
|
88 |
)
|
89 |
|
90 |
-
|
91 |
def chat(user_input, history):
|
92 |
history = history or []
|
93 |
context_text = "\n".join([
|
94 |
-
f"用户:{msg['content']}" if msg[
|
95 |
for msg in history
|
96 |
])
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
102 |
system=system_prompt,
|
103 |
-
|
|
|
104 |
question=user_input
|
105 |
)
|
106 |
|
|
|
107 |
try:
|
108 |
-
reply = llm.invoke(
|
109 |
except Exception as e:
|
110 |
reply = f"哎呀出错了:{str(e)}"
|
111 |
|
|
|
112 |
history.append({"role": "user", "content": user_input})
|
113 |
history.append({"role": "assistant", "content": reply})
|
114 |
|
115 |
return history, history
|
116 |
|
117 |
-
# Step
|
118 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
119 |
gr.Markdown("# 🎀 Sophia Chat Agent")
|
120 |
-
gr.Markdown("欢迎来到 **Sophia Jr
|
121 |
|
122 |
chatbot = gr.Chatbot(label="Sophia", type="messages")
|
123 |
-
msg = gr.Textbox(label="
|
124 |
state = gr.State([
|
125 |
{"role": "assistant", "content": "你好,我是 Sophia~你想聊啥?"}
|
126 |
])
|
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
import gradio as gr
|
13 |
|
14 |
+
# ========= Step 1: 加载预处理好的对话对 =========
|
15 |
+
file_path = "cleaned_dialog_pairs.json" # 👈 你刚生成的清洗后数据文件
|
16 |
with open(file_path, "r", encoding="utf-8") as f:
|
17 |
+
cleaned_pairs = json.load(f)
|
18 |
|
19 |
+
# 拼接为完整对话(用于向量化检索)
|
20 |
+
corpus = [f"用户:{pair['user']}\n好友:{pair['sophia']}" for pair in cleaned_pairs]
|
21 |
+
docs = [Document(page_content=entry) for entry in corpus]
|
22 |
|
23 |
+
# ========= Step 2: 构建向量库 =========
|
24 |
embedding_model = SentenceTransformer("BAAI/bge-base-zh")
|
25 |
+
embeddings = embedding_model.encode(corpus, show_progress_bar=True)
|
26 |
|
27 |
dimension = embeddings.shape[1]
|
28 |
index = faiss.IndexFlatL2(dimension)
|
|
|
37 |
docstore=InMemoryDocstore(docstore),
|
38 |
index_to_docstore_id=index_to_docstore_id
|
39 |
)
|
40 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
41 |
|
42 |
+
# ========= Step 3: 加载语言模型 =========
|
43 |
model_name = "Qwen/Qwen1.5-1.8B-Chat"
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
45 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).half().cuda().eval()
|
|
|
48 |
"text-generation",
|
49 |
model=model,
|
50 |
tokenizer=tokenizer,
|
51 |
+
max_new_tokens=64,
|
52 |
temperature=0.8,
|
53 |
top_p=0.9,
|
54 |
do_sample=True,
|
55 |
+
repetition_penalty=1.2,
|
56 |
return_full_text=False,
|
57 |
eos_token_id=tokenizer.eos_token_id,
|
58 |
pad_token_id=tokenizer.pad_token_id,
|
|
|
60 |
|
61 |
llm = HuggingFacePipeline(pipeline=pipe)
|
62 |
|
63 |
+
# ========= Step 4: Prompt 模板 =========
|
64 |
system_prompt = (
|
65 |
"你是一个可爱的微信好友,语气要俏皮、有点可爱、适度调侃,不要太正式。"
|
66 |
+
"请模仿下面的风格回答用户的问题。"
|
67 |
)
|
68 |
|
69 |
prompt_template = PromptTemplate(
|
70 |
+
input_variables=["system", "examples", "context", "question"],
|
71 |
+
template="""{system}
|
|
|
72 |
|
73 |
+
风格参考对话:
|
74 |
+
{examples}
|
|
|
75 |
|
76 |
+
相关聊天语料片段:
|
|
|
|
|
|
|
77 |
{context}
|
78 |
|
79 |
现在我说:
|
80 |
{question}
|
81 |
|
82 |
+
你该怎么回复我?请用微信口语风格,最多两句话:
|
83 |
"""
|
84 |
)
|
85 |
|
86 |
+
# ========= Step 5: 聊天函数 =========
|
87 |
def chat(user_input, history):
|
88 |
history = history or []
|
89 |
context_text = "\n".join([
|
90 |
+
f"用户:{msg['content']}" if msg["role"] == "user" else f"好友:{msg['content']}"
|
91 |
for msg in history
|
92 |
])
|
93 |
|
94 |
+
# 🔍 1. 检索与用户问题最相关的语料
|
95 |
+
retrieved_docs = retriever.get_relevant_documents(user_input)
|
96 |
+
retrieved_context = "\n".join([doc.page_content for doc in retrieved_docs])
|
97 |
+
|
98 |
+
# 📚 2. 示例风格从原始数据中截取(可调整数量)
|
99 |
+
example_pairs = cleaned_pairs[:3]
|
100 |
+
example_text = "\n".join([f"用户:{pair['user']}\n好友:{pair['sophia']}" for pair in example_pairs])
|
101 |
|
102 |
+
# 🧠 3. 拼接最终 prompt
|
103 |
+
prompt = prompt_template.format(
|
104 |
system=system_prompt,
|
105 |
+
examples=example_text,
|
106 |
+
context=retrieved_context + "\n" + context_text,
|
107 |
question=user_input
|
108 |
)
|
109 |
|
110 |
+
# 🤖 4. 模型生成回复
|
111 |
try:
|
112 |
+
reply = llm.invoke(prompt)
|
113 |
except Exception as e:
|
114 |
reply = f"哎呀出错了:{str(e)}"
|
115 |
|
116 |
+
# ✍️ 5. 更新历史(OpenAI风格格式)
|
117 |
history.append({"role": "user", "content": user_input})
|
118 |
history.append({"role": "assistant", "content": reply})
|
119 |
|
120 |
return history, history
|
121 |
|
122 |
+
# ========= Step 6: Gradio 页面 =========
|
123 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
124 |
gr.Markdown("# 🎀 Sophia Chat Agent")
|
125 |
+
gr.Markdown("欢迎来到 **Sophia Jr**,相信你也是马+7大家庭中的一员。快来和我聊聊吧!💬")
|
126 |
|
127 |
chatbot = gr.Chatbot(label="Sophia", type="messages")
|
128 |
+
msg = gr.Textbox(label="你想说啥子哦~", placeholder="快点跟 Sophia 开始聊天吧!", lines=2)
|
129 |
state = gr.State([
|
130 |
{"role": "assistant", "content": "你好,我是 Sophia~你想聊啥?"}
|
131 |
])
|
cleaned_dialog.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
langchain-huggingface
|
2 |
-
huggingface-hub
|
3 |
-
transformers>=4.36.2
|
4 |
-
sentence-transformers
|
5 |
-
faiss-cpu
|
6 |
gradio==4.15.0
|
7 |
-
langchain>=0.1.0
|
8 |
-
langchain-community
|
9 |
-
torch
|
10 |
accelerate
|
11 |
einops
|
12 |
tiktoken
|
13 |
transformers_stream_generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
langchain-huggingface
|
|
|
|
|
|
|
|
|
2 |
gradio==4.15.0
|
|
|
|
|
|
|
3 |
accelerate
|
4 |
einops
|
5 |
tiktoken
|
6 |
transformers_stream_generator
|
7 |
+
gradio>=4.15.0
|
8 |
+
transformers>=4.37.2
|
9 |
+
sentence-transformers
|
10 |
+
faiss-cpu
|
11 |
+
langchain>=0.1.14
|
12 |
+
langchain-community>=0.0.26
|
13 |
+
huggingface-hub
|
14 |
+
torch>=2.0
|
15 |
+
|