Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import torch | |
# Load the YOLOv7 model | |
model = torch.hub.load('WongKinYiu/yolov7', 'yolov7', force_reload=True) | |
def detect_objects(image): | |
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
results = model(img) # Perform inference | |
# Process results | |
detections = results.xyxy[0].numpy() # Get detections in xyxy format | |
annotated_image = image.copy() | |
for *box, conf, cls in detections: | |
x1, y1, x2, y2 = map(int, box) | |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
label = f'{model.names[int(cls)]}: {conf:.2f}' | |
cv2.putText(annotated_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) | |
return annotated_image | |
# Create Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# YOLOv7 Object Detection App") | |
image_input = gr.Image(label="Upload Image", type="numpy") | |
output_image = gr.Image(label="Detected Objects", type="numpy") | |
classify_button = gr.Button("Detect Objects") | |
classify_button.click(fn=detect_objects, inputs=image_input, outputs=output_image) | |
# Launch the interface | |
if __name__ == "__main__": | |
app.launch() |