from transformers import pipeline import gradio as gr from transformers import pipeline video_model = pipeline("video-classification", model="Rohit1412/deepfakerohit2.0") def classify_video(video): # Classify the uploaded video and return the results predictions = video_model(video) # Create a dictionary of labels and their corresponding scores result = {pred["label"]: pred["score"] for pred in predictions} # Return the result dictionary return result # Create Gradio interface interface = gr.Interface( fn=classify_video, inputs=gr.Video(label="Upload Video"), outputs=gr.Label(num_top_classes=3, label="Predictions"), title="Video deepfake Classification App", description="Upload a video to classify its content." ) # Launch the interface if __name__ == "__main__": interface.launch(debug=True)