|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
app = FastAPI() |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_name = "nikravan/glm-4vq" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
class Query(BaseModel): |
|
question: str |
|
|
|
@app.post("/predict") |
|
def predict(data: Query): |
|
inputs = tokenizer(data.question, return_tensors="pt").to(device) |
|
outputs = model.generate(**inputs, max_length=200) |
|
return {"answer": tokenizer.decode(outputs[0])} |
|
|