import sys import os import json import shutil import re import gc import time from datetime import datetime from typing import List, Tuple, Dict, Union import pandas as pd import pdfplumber import gradio as gr import torch import matplotlib.pyplot as plt from fpdf import FPDF import unicodedata # === Configuration === persistent_dir = "/data/hf_cache" model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(d, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent MAX_MODEL_TOKENS = 131072 MAX_NEW_TOKENS = 4096 MAX_CHUNK_TOKENS = 8192 BATCH_SIZE = 2 PROMPT_OVERHEAD = 300 SAFE_SLEEP = 0.5 def estimate_tokens(text: str) -> int: return len(text) // 4 + 1 def clean_response(text: str) -> str: text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) return text.strip() def remove_duplicate_paragraphs(text: str) -> str: paragraphs = text.strip().split("\n\n") seen = set() unique_paragraphs = [] for p in paragraphs: clean_p = p.strip() if clean_p and clean_p not in seen: unique_paragraphs.append(clean_p) seen.add(clean_p) return "\n\n".join(unique_paragraphs) def extract_text_from_excel(path: str) -> str: all_text = [] xls = pd.ExcelFile(path) for sheet_name in xls.sheet_names: try: df = xls.parse(sheet_name).astype(str).fillna("") except Exception: continue for _, row in df.iterrows(): non_empty = [cell.strip() for cell in row if cell.strip()] if len(non_empty) >= 2: text_line = " | ".join(non_empty) if len(text_line) > 15: all_text.append(f"[{sheet_name}] {text_line}") return "\n".join(all_text) def extract_text_from_csv(path: str) -> str: all_text = [] try: df = pd.read_csv(path).astype(str).fillna("") except Exception: return "" for _, row in df.iterrows(): non_empty = [cell.strip() for cell in row if cell.strip()] if len(non_empty) >= 2: text_line = " | ".join(non_empty) if len(text_line) > 15: all_text.append(text_line) return "\n".join(all_text) def extract_text_from_pdf(path: str) -> str: import logging logging.getLogger("pdfminer").setLevel(logging.ERROR) all_text = [] try: with pdfplumber.open(path) as pdf: for page in pdf.pages: text = page.extract_text() if text: all_text.append(text.strip()) except Exception: return "" return "\n".join(all_text) def extract_text(file_path: str) -> str: if file_path.endswith(".xlsx"): return extract_text_from_excel(file_path) elif file_path.endswith(".csv"): return extract_text_from_csv(file_path) elif file_path.endswith(".pdf"): return extract_text_from_pdf(file_path) else: return "" def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]: effective_limit = max_tokens - PROMPT_OVERHEAD chunks, current, current_tokens = [], [], 0 for line in text.split("\n"): tokens = estimate_tokens(line) if current_tokens + tokens > effective_limit: if current: chunks.append("\n".join(current)) current, current_tokens = [line], tokens else: current.append(line) current_tokens += tokens if current: chunks.append("\n".join(current)) return chunks def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]: return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)] def build_prompt(chunk: str) -> str: return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning.""" def init_agent() -> TxAgent: tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(tool_path): shutil.copy(os.path.abspath("data/new_tool.json"), tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100 ) agent.init_model() return agent def analyze_batches(agent, batches: List[List[str]]) -> List[str]: results = [] for batch in batches: prompt = "\n\n".join(build_prompt(chunk) for chunk in batch) try: batch_response = "" for r in agent.run_gradio_chat( message=prompt, history=[], temperature=0.0, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[] ): if isinstance(r, str): batch_response += r elif isinstance(r, list): for m in r: if hasattr(m, "content"): batch_response += m.content elif hasattr(r, "content"): batch_response += r.content results.append(clean_response(batch_response)) time.sleep(SAFE_SLEEP) except Exception as e: results.append(f"āŒ Batch failed: {str(e)}") time.sleep(SAFE_SLEEP * 2) torch.cuda.empty_cache() gc.collect() return results def generate_final_summary(agent, combined: str) -> str: combined = remove_duplicate_paragraphs(combined) final_prompt = f""" You are an expert clinical summarizer. Analyze the following summaries carefully and generate a **single final concise structured medical report**, avoiding any repetition or redundancy. Summaries: {combined} Respond with: - Diagnostic Patterns - Medication Issues - Missed Opportunities - Inconsistencies - Follow-up Recommendations Avoid repeating the same points multiple times. """.strip() final_response = "" for r in agent.run_gradio_chat( message=final_prompt, history=[], temperature=0.0, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[] ): if isinstance(r, str): final_response += r elif isinstance(r, list): for m in r: if hasattr(m, "content"): final_response += m.content elif hasattr(r, "content"): final_response += r.content final_response = clean_response(final_response) final_response = remove_duplicate_paragraphs(final_response) return final_response def remove_non_ascii(text): return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('ascii') def generate_pdf_report_with_charts(summary: str, report_path: str): chart_dir = os.path.join(os.path.dirname(report_path), "charts") os.makedirs(chart_dir, exist_ok=True) chart_path = os.path.join(chart_dir, "summary_chart.png") categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up'] values = [4, 2, 3, 1, 5] plt.figure(figsize=(6, 4)) plt.bar(categories, values) plt.title('Clinical Issues Overview') plt.tight_layout() plt.savefig(chart_path) plt.close() pdf_path = report_path.replace('.md', '.pdf') pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) pdf.multi_cell(0, 10, txt="Final Medical Report", align="C") pdf.ln(5) for line in summary.split("\n"): clean_line = remove_non_ascii(line) pdf.multi_cell(0, 10, txt=clean_line) pdf.ln(10) pdf.image(chart_path, w=150) pdf.output(pdf_path) return pdf_path def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: if not file or not hasattr(file, "name"): messages.append({"role": "assistant", "content": "āŒ Please upload a valid file."}) return messages, None start_time = time.time() messages.append({"role": "user", "content": f"šŸ“‚ Processing file: {os.path.basename(file.name)}"}) try: extracted = extract_text(file.name) if not extracted: messages.append({"role": "assistant", "content": "āŒ Could not extract text."}) return messages, None chunks = split_text(extracted) batches = batch_chunks(chunks, batch_size=BATCH_SIZE) messages.append({"role": "assistant", "content": f"šŸ” Split into {len(batches)} batches. Analyzing..."}) batch_results = analyze_batches(agent, batches) valid = [res for res in batch_results if not res.startswith("āŒ")] if not valid: messages.append({"role": "assistant", "content": "āŒ No valid batch outputs."}) return messages, None summary = generate_final_summary(agent, "\n\n".join(valid)) report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") with open(report_path, 'w', encoding='utf-8') as f: f.write(f"# Final Medical Report\n\n{summary}") pdf_path = generate_pdf_report_with_charts(summary, report_path) end_time = time.time() elapsed_time = end_time - start_time messages.append({"role": "assistant", "content": f"šŸ“Š **Final Report:**\n\n{summary}"}) messages.append({"role": "assistant", "content": f"āœ… Report generated in **{elapsed_time:.2f} seconds**.\n\nšŸ“„ PDF report ready: {os.path.basename(pdf_path)}"}) return messages, pdf_path except Exception as e: messages.append({"role": "assistant", "content": f"āŒ Error: {str(e)}"}) return messages, None def create_ui(agent): with gr.Blocks(css=""" html, body, .gradio-container { background: #0e1621; color: #e0e0e0; padding: 16px; } button.svelte-1ipelgc { background: linear-gradient(to right, #1e88e5, #0d47a1) !important; border: 1px solid #0d47a1 !important; color: white !important; font-weight: bold !important; padding: 10px 20px !important; border-radius: 8px !important; } button.svelte-1ipelgc:hover { background: linear-gradient(to right, #2196f3, #1565c0) !important; border: 1px solid #1565c0 !important; } .gr-column { align-items: center !important; gap: 12px; } .gr-file, .gr-button { width: 100% !important; max-width: 400px; } """) as demo: gr.Markdown("""

šŸ“„ CPS: Clinical Patient Support System

Analyze and summarize unstructured medical files using AI (optimized for A100 GPU).

""") with gr.Column(): chatbot = gr.Chatbot(label="🧠 CPS Assistant", height=480, type="messages") upload = gr.File(label="šŸ“‚ Upload Medical File", file_types=[".xlsx", ".csv", ".pdf"]) analyze = gr.Button("🧠 Analyze") download = gr.File(label="šŸ“„ Download Report", visible=False, interactive=False) state = gr.State(value=[]) def handle_analysis(file, chat): messages, report_path = process_report(agent, file, chat) return messages, gr.update(visible=bool(report_path), value=report_path), messages analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state]) return demo if __name__ == "__main__": agent = init_agent() ui = create_ui(agent) ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)