Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,14 @@ import os
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
-
from typing import List
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
import time
|
12 |
|
|
|
13 |
persistent_dir = "/data/hf_cache"
|
14 |
os.makedirs(persistent_dir, exist_ok=True)
|
15 |
|
@@ -36,13 +37,10 @@ def file_hash(path: str) -> str:
|
|
36 |
|
37 |
def clean_response(text: str) -> str:
|
38 |
try:
|
39 |
-
# First try to encode/decode to handle any surrogate pairs
|
40 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
41 |
-
except
|
42 |
-
# Fallback to replace strategy if there are invalid characters
|
43 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
44 |
|
45 |
-
# Additional cleaning
|
46 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
47 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
48 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
@@ -59,7 +57,6 @@ def parse_excel_to_prompts(file_path: str) -> List[str]:
|
|
59 |
records = []
|
60 |
for _, row in group.iterrows():
|
61 |
record = f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}"
|
62 |
-
# Clean each record to prevent encoding issues
|
63 |
records.append(clean_response(record))
|
64 |
|
65 |
record_text = "\n".join(records)
|
@@ -94,73 +91,105 @@ def init_agent():
|
|
94 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
95 |
|
96 |
if not os.path.exists(target_tool_path):
|
97 |
-
|
98 |
-
shutil.copy(default_tool_path, target_tool_path)
|
99 |
-
except Exception as e:
|
100 |
-
raise RuntimeError(f"Failed to copy tool file: {str(e)}")
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
return agent
|
115 |
-
except Exception as e:
|
116 |
-
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
|
117 |
|
118 |
def create_ui(agent):
|
119 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
120 |
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
|
121 |
|
122 |
-
with gr.
|
123 |
-
with gr.
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
if not file:
|
151 |
raise gr.Error("Please upload an Excel file first")
|
152 |
|
153 |
try:
|
154 |
-
#
|
155 |
-
|
156 |
-
|
157 |
-
yield
|
158 |
|
159 |
-
# Parse Excel file
|
160 |
prompts = parse_excel_to_prompts(file.name)
|
161 |
full_output = ""
|
162 |
|
163 |
-
# Process each booking
|
164 |
for idx, prompt in enumerate(prompts, 1):
|
165 |
chunk_output = ""
|
166 |
try:
|
@@ -181,65 +210,59 @@ def create_ui(agent):
|
|
181 |
elif isinstance(result, str):
|
182 |
cleaned = clean_response(result)
|
183 |
chunk_output += cleaned + "\n"
|
184 |
-
|
185 |
-
# Yield intermediate results
|
186 |
if chunk_output:
|
187 |
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
|
188 |
-
|
189 |
-
yield
|
190 |
|
191 |
except Exception as e:
|
192 |
error_msg = f"⚠️ Error processing booking {idx}: {str(e)}"
|
193 |
-
|
194 |
-
yield
|
195 |
continue
|
196 |
|
197 |
if chunk_output:
|
198 |
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
|
199 |
-
|
200 |
full_output += output + "\n"
|
201 |
-
yield
|
202 |
|
203 |
# Save report
|
204 |
file_hash_value = file_hash(file.name)
|
205 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
206 |
with open(report_path, "w", encoding="utf-8") as f:
|
207 |
f.write(full_output)
|
208 |
-
|
209 |
-
yield
|
210 |
|
211 |
except Exception as e:
|
212 |
-
|
213 |
-
yield
|
214 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
215 |
-
|
|
|
|
|
|
|
216 |
# Event handlers
|
217 |
send_btn.click(
|
218 |
analyze,
|
219 |
-
inputs=[msg_input,
|
220 |
outputs=[chatbot, download_output],
|
221 |
api_name="analyze"
|
222 |
)
|
223 |
|
224 |
msg_input.submit(
|
225 |
analyze,
|
226 |
-
inputs=[msg_input,
|
227 |
outputs=[chatbot, download_output]
|
228 |
)
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
2. Optionally add specific analysis instructions
|
236 |
-
3. Click 'Analyze' to process the data
|
237 |
-
4. Review results and download the full report
|
238 |
-
|
239 |
-
**Excel Format Requirements:**
|
240 |
-
- Must contain columns: Booking Number, Form Name, Form Item, Item Response, Interview Date, Interviewer, Description
|
241 |
-
- Each row represents one patient record item
|
242 |
-
""")
|
243 |
|
244 |
return demo
|
245 |
|
@@ -248,7 +271,6 @@ if __name__ == "__main__":
|
|
248 |
agent = init_agent()
|
249 |
demo = create_ui(agent)
|
250 |
|
251 |
-
# Launch with error handling
|
252 |
demo.queue(
|
253 |
api_open=False,
|
254 |
max_size=20
|
@@ -257,7 +279,7 @@ if __name__ == "__main__":
|
|
257 |
server_port=7860,
|
258 |
show_error=True,
|
259 |
allowed_paths=[report_dir],
|
260 |
-
share=False
|
261 |
)
|
262 |
except Exception as e:
|
263 |
print(f"Failed to launch application: {str(e)}")
|
|
|
3 |
import pandas as pd
|
4 |
import json
|
5 |
import gradio as gr
|
6 |
+
from typing import List, Tuple
|
7 |
import hashlib
|
8 |
import shutil
|
9 |
import re
|
10 |
from datetime import datetime
|
11 |
import time
|
12 |
|
13 |
+
# Configuration and setup
|
14 |
persistent_dir = "/data/hf_cache"
|
15 |
os.makedirs(persistent_dir, exist_ok=True)
|
16 |
|
|
|
37 |
|
38 |
def clean_response(text: str) -> str:
|
39 |
try:
|
|
|
40 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
41 |
+
except UnicodeError:
|
|
|
42 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
43 |
|
|
|
44 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
45 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
46 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
|
|
57 |
records = []
|
58 |
for _, row in group.iterrows():
|
59 |
record = f"- {row['Form Name']}: {row['Form Item']} = {row['Item Response']} ({row['Interview Date']} by {row['Interviewer']})\n{row['Description']}"
|
|
|
60 |
records.append(clean_response(record))
|
61 |
|
62 |
record_text = "\n".join(records)
|
|
|
91 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
92 |
|
93 |
if not os.path.exists(target_tool_path):
|
94 |
+
shutil.copy(default_tool_path, target_tool_path)
|
|
|
|
|
|
|
95 |
|
96 |
+
agent = TxAgent(
|
97 |
+
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
98 |
+
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
99 |
+
tool_files_dict={"new_tool": target_tool_path},
|
100 |
+
force_finish=True,
|
101 |
+
enable_checker=True,
|
102 |
+
step_rag_num=4,
|
103 |
+
seed=100,
|
104 |
+
additional_default_tools=[],
|
105 |
+
)
|
106 |
+
agent.init_model()
|
107 |
+
return agent
|
|
|
|
|
|
|
108 |
|
109 |
def create_ui(agent):
|
110 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo:
|
111 |
gr.Markdown("# 🏥 Clinical Oversight Assistant (Excel Optimized)")
|
112 |
|
113 |
+
with gr.Tabs():
|
114 |
+
with gr.TabItem("Analysis"):
|
115 |
+
with gr.Row():
|
116 |
+
# Left column - Inputs
|
117 |
+
with gr.Column(scale=1):
|
118 |
+
file_upload = gr.File(
|
119 |
+
label="Upload Excel File",
|
120 |
+
file_types=[".xlsx"],
|
121 |
+
file_count="single",
|
122 |
+
interactive=True
|
123 |
+
)
|
124 |
+
msg_input = gr.Textbox(
|
125 |
+
label="Additional Instructions",
|
126 |
+
placeholder="Add any specific analysis requests...",
|
127 |
+
lines=3
|
128 |
+
)
|
129 |
+
with gr.Row():
|
130 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
131 |
+
send_btn = gr.Button("Analyze", variant="primary")
|
132 |
+
|
133 |
+
# Right column - Outputs
|
134 |
+
with gr.Column(scale=2):
|
135 |
+
chatbot = gr.Chatbot(
|
136 |
+
label="Analysis Results",
|
137 |
+
height=600,
|
138 |
+
bubble_full_width=False,
|
139 |
+
show_copy_button=True
|
140 |
+
)
|
141 |
+
download_output = gr.File(
|
142 |
+
label="Download Full Report",
|
143 |
+
interactive=False
|
144 |
+
)
|
145 |
+
|
146 |
+
with gr.TabItem("Instructions"):
|
147 |
+
gr.Markdown("""
|
148 |
+
## How to Use This Tool
|
149 |
|
150 |
+
1. **Upload Excel File**: Select your patient records Excel file
|
151 |
+
2. **Add Instructions** (Optional): Provide any specific analysis requests
|
152 |
+
3. **Click Analyze**: The system will process each patient record
|
153 |
+
4. **Review Results**: Analysis appears in the chat window
|
154 |
+
5. **Download Report**: Get a full text report of all findings
|
155 |
+
|
156 |
+
### Excel File Requirements
|
157 |
+
Your Excel file must contain these columns:
|
158 |
+
- Booking Number
|
159 |
+
- Form Name
|
160 |
+
- Form Item
|
161 |
+
- Item Response
|
162 |
+
- Interview Date
|
163 |
+
- Interviewer
|
164 |
+
- Description
|
165 |
+
|
166 |
+
### Analysis Includes
|
167 |
+
- Missed diagnoses
|
168 |
+
- Medication conflicts
|
169 |
+
- Incomplete assessments
|
170 |
+
- Urgent follow-up needs
|
171 |
+
""")
|
172 |
|
173 |
+
def format_message(role: str, content: str) -> Tuple[str, str]:
|
174 |
+
"""Format messages for the chatbot in (user, bot) format"""
|
175 |
+
if role == "user":
|
176 |
+
return (content, None)
|
177 |
+
else:
|
178 |
+
return (None, content)
|
179 |
+
|
180 |
+
def analyze(message: str, chat_history: List[Tuple[str, str]], file) -> Tuple[List[Tuple[str, str]], str]:
|
181 |
if not file:
|
182 |
raise gr.Error("Please upload an Excel file first")
|
183 |
|
184 |
try:
|
185 |
+
# Initialize chat history with user message
|
186 |
+
new_history = chat_history + [format_message("user", message)]
|
187 |
+
new_history.append(format_message("assistant", "⏳ Processing Excel data..."))
|
188 |
+
yield new_history, None
|
189 |
|
|
|
190 |
prompts = parse_excel_to_prompts(file.name)
|
191 |
full_output = ""
|
192 |
|
|
|
193 |
for idx, prompt in enumerate(prompts, 1):
|
194 |
chunk_output = ""
|
195 |
try:
|
|
|
210 |
elif isinstance(result, str):
|
211 |
cleaned = clean_response(result)
|
212 |
chunk_output += cleaned + "\n"
|
213 |
+
|
|
|
214 |
if chunk_output:
|
215 |
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
|
216 |
+
new_history[-1] = format_message("assistant", output)
|
217 |
+
yield new_history, None
|
218 |
|
219 |
except Exception as e:
|
220 |
error_msg = f"⚠️ Error processing booking {idx}: {str(e)}"
|
221 |
+
new_history.append(format_message("assistant", error_msg))
|
222 |
+
yield new_history, None
|
223 |
continue
|
224 |
|
225 |
if chunk_output:
|
226 |
output = f"--- Booking {idx} ---\n{chunk_output.strip()}\n"
|
227 |
+
new_history.append(format_message("assistant", output))
|
228 |
full_output += output + "\n"
|
229 |
+
yield new_history, None
|
230 |
|
231 |
# Save report
|
232 |
file_hash_value = file_hash(file.name)
|
233 |
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
|
234 |
with open(report_path, "w", encoding="utf-8") as f:
|
235 |
f.write(full_output)
|
236 |
+
|
237 |
+
yield new_history, report_path if os.path.exists(report_path) else None
|
238 |
|
239 |
except Exception as e:
|
240 |
+
new_history.append(format_message("assistant", f"❌ Error: {str(e)}"))
|
241 |
+
yield new_history, None
|
242 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
243 |
+
|
244 |
+
def clear_chat():
|
245 |
+
return [], None
|
246 |
+
|
247 |
# Event handlers
|
248 |
send_btn.click(
|
249 |
analyze,
|
250 |
+
inputs=[msg_input, chatbot, file_upload],
|
251 |
outputs=[chatbot, download_output],
|
252 |
api_name="analyze"
|
253 |
)
|
254 |
|
255 |
msg_input.submit(
|
256 |
analyze,
|
257 |
+
inputs=[msg_input, chatbot, file_upload],
|
258 |
outputs=[chatbot, download_output]
|
259 |
)
|
260 |
|
261 |
+
clear_btn.click(
|
262 |
+
clear_chat,
|
263 |
+
inputs=[],
|
264 |
+
outputs=[chatbot, download_output]
|
265 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
return demo
|
268 |
|
|
|
271 |
agent = init_agent()
|
272 |
demo = create_ui(agent)
|
273 |
|
|
|
274 |
demo.queue(
|
275 |
api_open=False,
|
276 |
max_size=20
|
|
|
279 |
server_port=7860,
|
280 |
show_error=True,
|
281 |
allowed_paths=[report_dir],
|
282 |
+
share=False
|
283 |
)
|
284 |
except Exception as e:
|
285 |
print(f"Failed to launch application: {str(e)}")
|