Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,10 @@ def estimate_tokens(text: str) -> int:
|
|
44 |
|
45 |
def extract_text_from_excel(file_path: str) -> str:
|
46 |
all_text = []
|
47 |
-
|
|
|
|
|
|
|
48 |
for sheet_name in xls.sheet_names:
|
49 |
df = xls.parse(sheet_name).astype(str).fillna("")
|
50 |
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
|
@@ -105,64 +108,55 @@ def init_agent():
|
|
105 |
agent.init_model()
|
106 |
return agent
|
107 |
|
108 |
-
def stream_report(agent, file: gr.File,
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
for res in agent.run_gradio_chat(
|
125 |
-
message=
|
126 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
127 |
call_agent=False, conversation=[]
|
128 |
):
|
129 |
if isinstance(res, str):
|
130 |
-
|
131 |
elif hasattr(res, "content"):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
|
145 |
-
messages.append(("assistant", "π Generating final summary..."))
|
146 |
-
yield messages, None, ""
|
147 |
-
|
148 |
-
final_report = ""
|
149 |
-
for res in agent.run_gradio_chat(
|
150 |
-
message=summary_prompt, history=[], temperature=0.2,
|
151 |
-
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
152 |
-
call_agent=False, conversation=[]
|
153 |
-
):
|
154 |
-
if isinstance(res, str):
|
155 |
-
final_report += res
|
156 |
-
elif hasattr(res, "content"):
|
157 |
-
final_report += res.content
|
158 |
-
|
159 |
-
cleaned = clean_response(final_report)
|
160 |
-
messages.append(("assistant", cleaned))
|
161 |
-
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
162 |
-
with open(report_path, 'w') as f:
|
163 |
-
f.write(f"# π§ Final Patient Report\n\n{cleaned}")
|
164 |
-
|
165 |
-
yield messages, report_path, cleaned
|
166 |
|
167 |
def create_ui(agent):
|
168 |
with gr.Blocks(css="""
|
@@ -180,11 +174,11 @@ def create_ui(agent):
|
|
180 |
border-radius: 0;
|
181 |
background-color: #1a1f2e;
|
182 |
}
|
183 |
-
.
|
184 |
background-color: #131720;
|
185 |
border-radius: 12px;
|
186 |
padding: 20px;
|
187 |
-
height: 600px;
|
188 |
overflow-y: auto;
|
189 |
border: 1px solid #2c3344;
|
190 |
}
|
@@ -204,17 +198,16 @@ def create_ui(agent):
|
|
204 |
gr.Markdown("""# π§ Clinical Reasoning Assistant
|
205 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
206 |
""")
|
207 |
-
chatbot = gr.Chatbot(label="Chatbot", elem_classes="chatbot", type="tuples")
|
208 |
-
report_output_markdown = gr.Markdown(visible=False)
|
209 |
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
210 |
analyze_btn = gr.Button("Analyze")
|
211 |
-
|
212 |
-
|
|
|
213 |
|
214 |
analyze_btn.click(
|
215 |
fn=stream_report,
|
216 |
-
inputs=[file_upload,
|
217 |
-
outputs=[
|
218 |
)
|
219 |
|
220 |
return demo
|
@@ -223,7 +216,7 @@ if __name__ == "__main__":
|
|
223 |
try:
|
224 |
agent = init_agent()
|
225 |
demo = create_ui(agent)
|
226 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=
|
227 |
except Exception as e:
|
228 |
print(f"Error: {str(e)}")
|
229 |
sys.exit(1)
|
|
|
44 |
|
45 |
def extract_text_from_excel(file_path: str) -> str:
|
46 |
all_text = []
|
47 |
+
try:
|
48 |
+
xls = pd.ExcelFile(file_path)
|
49 |
+
except Exception as e:
|
50 |
+
raise ValueError(f"β Error reading Excel file: {e}")
|
51 |
for sheet_name in xls.sheet_names:
|
52 |
df = xls.parse(sheet_name).astype(str).fillna("")
|
53 |
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
|
|
|
108 |
agent.init_model()
|
109 |
return agent
|
110 |
|
111 |
+
def stream_report(agent, file: gr.File, full_output: str) -> Generator:
|
112 |
+
accumulated_text = ""
|
113 |
+
try:
|
114 |
+
if file is None:
|
115 |
+
yield "β Please upload a valid Excel file.", None, ""
|
116 |
+
return
|
117 |
+
|
118 |
+
filepath = file.name if hasattr(file, "name") else file
|
119 |
+
text = extract_text_from_excel(filepath)
|
120 |
+
chunks = split_text_into_chunks(text)
|
121 |
+
|
122 |
+
for i, chunk in enumerate(chunks):
|
123 |
+
prompt = build_prompt_from_text(chunk)
|
124 |
+
partial = ""
|
125 |
+
for res in agent.run_gradio_chat(
|
126 |
+
message=prompt, history=[], temperature=0.2,
|
127 |
+
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
128 |
+
call_agent=False, conversation=[]
|
129 |
+
):
|
130 |
+
if isinstance(res, str):
|
131 |
+
partial += res
|
132 |
+
elif hasattr(res, "content"):
|
133 |
+
partial += res.content
|
134 |
+
cleaned = clean_response(partial)
|
135 |
+
accumulated_text += f"\n\nπ **Chunk {i+1}**:\n{cleaned}"
|
136 |
+
yield accumulated_text, None, ""
|
137 |
+
|
138 |
+
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + accumulated_text
|
139 |
+
final_report = ""
|
140 |
for res in agent.run_gradio_chat(
|
141 |
+
message=summary_prompt, history=[], temperature=0.2,
|
142 |
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
|
143 |
call_agent=False, conversation=[]
|
144 |
):
|
145 |
if isinstance(res, str):
|
146 |
+
final_report += res
|
147 |
elif hasattr(res, "content"):
|
148 |
+
final_report += res.content
|
149 |
+
|
150 |
+
cleaned = clean_response(final_report)
|
151 |
+
accumulated_text += f"\n\nπ **Final Summary**:\n{cleaned}"
|
152 |
+
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
153 |
+
with open(report_path, 'w') as f:
|
154 |
+
f.write(f"# π§ Final Patient Report\n\n{cleaned}")
|
155 |
+
|
156 |
+
yield accumulated_text, report_path, cleaned
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
yield f"β Error: {str(e)}", None, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
def create_ui(agent):
|
162 |
with gr.Blocks(css="""
|
|
|
174 |
border-radius: 0;
|
175 |
background-color: #1a1f2e;
|
176 |
}
|
177 |
+
.output-markdown {
|
178 |
background-color: #131720;
|
179 |
border-radius: 12px;
|
180 |
padding: 20px;
|
181 |
+
min-height: 600px;
|
182 |
overflow-y: auto;
|
183 |
border: 1px solid #2c3344;
|
184 |
}
|
|
|
198 |
gr.Markdown("""# π§ Clinical Reasoning Assistant
|
199 |
Upload clinical Excel records below and click **Analyze** to generate a medical summary.
|
200 |
""")
|
|
|
|
|
201 |
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
202 |
analyze_btn = gr.Button("Analyze")
|
203 |
+
report_output_markdown = gr.Markdown(elem_classes="output-markdown")
|
204 |
+
report_file = gr.File(label="Download Report", visible=False)
|
205 |
+
full_output = gr.State(value="")
|
206 |
|
207 |
analyze_btn.click(
|
208 |
fn=stream_report,
|
209 |
+
inputs=[file_upload, full_output],
|
210 |
+
outputs=[report_output_markdown, report_file, full_output]
|
211 |
)
|
212 |
|
213 |
return demo
|
|
|
216 |
try:
|
217 |
agent = init_agent()
|
218 |
demo = create_ui(agent)
|
219 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=True)
|
220 |
except Exception as e:
|
221 |
print(f"Error: {str(e)}")
|
222 |
sys.exit(1)
|