Update app.py
Browse files
app.py
CHANGED
@@ -34,28 +34,24 @@ from txagent.txagent import TxAgent
|
|
34 |
|
35 |
# Constants
|
36 |
MAX_TOKENS = 32768
|
37 |
-
CHUNK_SIZE = 10000
|
38 |
MAX_NEW_TOKENS = 2048
|
39 |
-
MAX_BOOKINGS_PER_CHUNK = 5
|
40 |
|
41 |
-
def file_hash(path: str) -> str:
|
42 |
-
with open(path, "rb") as f:
|
43 |
-
return hashlib.md5(f.read()).hexdigest()
|
44 |
|
45 |
def clean_response(text: str) -> str:
|
46 |
try:
|
47 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
48 |
except UnicodeError:
|
49 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
50 |
-
|
51 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
52 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
53 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
54 |
return text.strip()
|
55 |
|
|
|
56 |
def estimate_tokens(text: str) -> int:
|
57 |
return len(text) // 3.5
|
58 |
|
|
|
59 |
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
60 |
data = {
|
61 |
'bookings': defaultdict(list),
|
@@ -66,7 +62,7 @@ def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
66 |
'doctors': set(),
|
67 |
'timeline': []
|
68 |
}
|
69 |
-
|
70 |
df = df.sort_values('Interview Date')
|
71 |
for booking, group in df.groupby('Booking Number'):
|
72 |
for _, row in group.iterrows():
|
@@ -79,11 +75,11 @@ def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
79 |
'response': str(row['Item Response']),
|
80 |
'notes': str(row['Description'])
|
81 |
}
|
82 |
-
|
83 |
data['bookings'][booking].append(entry)
|
84 |
data['timeline'].append(entry)
|
85 |
data['doctors'].add(entry['doctor'])
|
86 |
-
|
87 |
form_lower = entry['form'].lower()
|
88 |
if 'medication' in form_lower or 'drug' in form_lower:
|
89 |
data['medications'][entry['item']].append(entry)
|
@@ -93,9 +89,10 @@ def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
93 |
data['tests'][entry['item']].append(entry)
|
94 |
elif 'procedure' in form_lower or 'surgery' in form_lower:
|
95 |
data['procedures'][entry['item']].append(entry)
|
96 |
-
|
97 |
return data
|
98 |
|
|
|
99 |
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
|
100 |
prompt_lines = [
|
101 |
"### Patient Clinical Reasoning Task",
|
@@ -138,33 +135,14 @@ def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str])
|
|
138 |
|
139 |
return "\n".join(prompt_lines)
|
140 |
|
141 |
-
def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]:
|
142 |
-
all_bookings = list(patient_data['bookings'].keys())
|
143 |
-
booking_sizes = []
|
144 |
-
|
145 |
-
for booking in all_bookings:
|
146 |
-
entries = patient_data['bookings'][booking]
|
147 |
-
size = sum(estimate_tokens(str(e)) for e in entries)
|
148 |
-
booking_sizes.append((booking, size))
|
149 |
-
|
150 |
-
booking_sizes.sort(key=lambda x: x[1], reverse=True)
|
151 |
-
chunks = [[] for _ in range(3)]
|
152 |
-
chunk_sizes = [0, 0, 0]
|
153 |
-
|
154 |
-
for booking, size in booking_sizes:
|
155 |
-
min_chunk = chunk_sizes.index(min(chunk_sizes))
|
156 |
-
chunks[min_chunk].append(booking)
|
157 |
-
chunk_sizes[min_chunk] += size
|
158 |
-
|
159 |
-
return chunks
|
160 |
|
161 |
def init_agent():
|
162 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
163 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
164 |
-
|
165 |
if not os.path.exists(target_tool_path):
|
166 |
shutil.copy(default_tool_path, target_tool_path)
|
167 |
-
|
168 |
agent = TxAgent(
|
169 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
170 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
@@ -178,6 +156,7 @@ def init_agent():
|
|
178 |
agent.init_model()
|
179 |
return agent
|
180 |
|
|
|
181 |
def analyze_with_agent(agent, prompt: str) -> str:
|
182 |
try:
|
183 |
response = ""
|
@@ -198,11 +177,11 @@ def analyze_with_agent(agent, prompt: str) -> str:
|
|
198 |
response += clean_response(result) + "\n"
|
199 |
elif hasattr(result, 'content'):
|
200 |
response += clean_response(result.content) + "\n"
|
201 |
-
|
202 |
return response.strip()
|
203 |
except Exception as e:
|
204 |
return f"Error in analysis: {str(e)}"
|
205 |
|
|
|
206 |
def analyze(file):
|
207 |
if not file:
|
208 |
raise gr.Error("Please upload a file")
|
@@ -212,79 +191,65 @@ def analyze(file):
|
|
212 |
patient_data = process_patient_data(df)
|
213 |
all_bookings = list(patient_data['bookings'].keys())
|
214 |
|
215 |
-
#
|
216 |
-
|
|
|
|
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
235 |
with open(report_path, 'w') as f:
|
236 |
f.write(full_report)
|
237 |
|
238 |
-
|
239 |
|
240 |
except Exception as e:
|
241 |
raise gr.Error(f"Error: {str(e)}")
|
242 |
|
|
|
243 |
def create_ui(agent):
|
244 |
-
with gr.Blocks(
|
245 |
-
gr.
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
with gr.Column(scale=1):
|
251 |
-
file_upload = gr.File(
|
252 |
-
label="Upload Excel File",
|
253 |
-
file_types=[".xlsx"],
|
254 |
-
file_count="single"
|
255 |
-
)
|
256 |
-
analyze_btn = gr.Button("Analyze", variant="primary")
|
257 |
-
status = gr.Markdown("Ready")
|
258 |
-
|
259 |
-
with gr.Column(scale=2):
|
260 |
-
output = gr.Markdown()
|
261 |
-
report = gr.File(label="Download Report")
|
262 |
-
|
263 |
-
with gr.TabItem("Instructions"):
|
264 |
-
gr.Markdown("""
|
265 |
-
## How to Use
|
266 |
-
1. Upload patient history Excel
|
267 |
-
2. Click Analyze
|
268 |
-
3. View/download report
|
269 |
-
|
270 |
-
**Required Columns:**
|
271 |
-
- Booking Number
|
272 |
-
- Interview Date
|
273 |
-
- Interviewer
|
274 |
-
- Form Name
|
275 |
-
- Form Item
|
276 |
-
- Item Response
|
277 |
-
- Description
|
278 |
-
""")
|
279 |
-
|
280 |
analyze_btn.click(
|
281 |
analyze,
|
282 |
-
inputs=file_upload,
|
283 |
-
outputs=[
|
284 |
)
|
285 |
-
|
286 |
return demo
|
287 |
|
|
|
288 |
if __name__ == "__main__":
|
289 |
try:
|
290 |
agent = init_agent()
|
@@ -297,4 +262,4 @@ if __name__ == "__main__":
|
|
297 |
)
|
298 |
except Exception as e:
|
299 |
print(f"Error: {str(e)}")
|
300 |
-
sys.exit(1)
|
|
|
34 |
|
35 |
# Constants
|
36 |
MAX_TOKENS = 32768
|
|
|
37 |
MAX_NEW_TOKENS = 2048
|
|
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
def clean_response(text: str) -> str:
|
41 |
try:
|
42 |
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
|
43 |
except UnicodeError:
|
44 |
text = text.encode('utf-8', 'replace').decode('utf-8')
|
|
|
45 |
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
|
46 |
text = re.sub(r"\n{3,}", "\n\n", text)
|
47 |
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
|
48 |
return text.strip()
|
49 |
|
50 |
+
|
51 |
def estimate_tokens(text: str) -> int:
|
52 |
return len(text) // 3.5
|
53 |
|
54 |
+
|
55 |
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
56 |
data = {
|
57 |
'bookings': defaultdict(list),
|
|
|
62 |
'doctors': set(),
|
63 |
'timeline': []
|
64 |
}
|
65 |
+
|
66 |
df = df.sort_values('Interview Date')
|
67 |
for booking, group in df.groupby('Booking Number'):
|
68 |
for _, row in group.iterrows():
|
|
|
75 |
'response': str(row['Item Response']),
|
76 |
'notes': str(row['Description'])
|
77 |
}
|
78 |
+
|
79 |
data['bookings'][booking].append(entry)
|
80 |
data['timeline'].append(entry)
|
81 |
data['doctors'].add(entry['doctor'])
|
82 |
+
|
83 |
form_lower = entry['form'].lower()
|
84 |
if 'medication' in form_lower or 'drug' in form_lower:
|
85 |
data['medications'][entry['item']].append(entry)
|
|
|
89 |
data['tests'][entry['item']].append(entry)
|
90 |
elif 'procedure' in form_lower or 'surgery' in form_lower:
|
91 |
data['procedures'][entry['item']].append(entry)
|
92 |
+
|
93 |
return data
|
94 |
|
95 |
+
|
96 |
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
|
97 |
prompt_lines = [
|
98 |
"### Patient Clinical Reasoning Task",
|
|
|
135 |
|
136 |
return "\n".join(prompt_lines)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
def init_agent():
|
140 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
141 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
142 |
+
|
143 |
if not os.path.exists(target_tool_path):
|
144 |
shutil.copy(default_tool_path, target_tool_path)
|
145 |
+
|
146 |
agent = TxAgent(
|
147 |
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
148 |
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
|
|
156 |
agent.init_model()
|
157 |
return agent
|
158 |
|
159 |
+
|
160 |
def analyze_with_agent(agent, prompt: str) -> str:
|
161 |
try:
|
162 |
response = ""
|
|
|
177 |
response += clean_response(result) + "\n"
|
178 |
elif hasattr(result, 'content'):
|
179 |
response += clean_response(result.content) + "\n"
|
|
|
180 |
return response.strip()
|
181 |
except Exception as e:
|
182 |
return f"Error in analysis: {str(e)}"
|
183 |
|
184 |
+
|
185 |
def analyze(file):
|
186 |
if not file:
|
187 |
raise gr.Error("Please upload a file")
|
|
|
191 |
patient_data = process_patient_data(df)
|
192 |
all_bookings = list(patient_data['bookings'].keys())
|
193 |
|
194 |
+
# Chunking logic based on estimated token limits
|
195 |
+
chunks = []
|
196 |
+
current_chunk = []
|
197 |
+
current_size = 0
|
198 |
|
199 |
+
for booking in all_bookings:
|
200 |
+
booking_entries = patient_data['bookings'][booking]
|
201 |
+
booking_prompt = generate_analysis_prompt(patient_data, [booking])
|
202 |
+
token_count = estimate_tokens(booking_prompt)
|
203 |
+
if current_size + token_count > MAX_TOKENS:
|
204 |
+
if current_chunk:
|
205 |
+
chunks.append(current_chunk)
|
206 |
+
current_chunk = [booking]
|
207 |
+
current_size = token_count
|
208 |
+
else:
|
209 |
+
current_chunk.append(booking)
|
210 |
+
current_size += token_count
|
211 |
|
212 |
+
if current_chunk:
|
213 |
+
chunks.append(current_chunk)
|
214 |
|
215 |
+
chunk_responses = []
|
216 |
+
for chunk in chunks:
|
217 |
+
prompt = generate_analysis_prompt(patient_data, chunk) + "\n\n" + "\n".join([
|
218 |
+
"**Please analyze this part of the patient history.**",
|
219 |
+
"Focus on identifying patterns, issues, and possible missed opportunities."
|
220 |
+
])
|
221 |
+
chunk_responses.append(analyze_with_agent(agent, prompt))
|
222 |
|
223 |
+
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key insights, missed diagnoses, medication issues, inconsistencies and follow-up recommendations in a clear and structured way."
|
224 |
+
final_response = analyze_with_agent(agent, final_prompt)
|
225 |
+
full_report = f"# \U0001f9e0 Full Patient History Analysis\n\n{final_response}"
|
226 |
+
|
227 |
+
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
228 |
with open(report_path, 'w') as f:
|
229 |
f.write(full_report)
|
230 |
|
231 |
+
return [("user", "[Excel Uploaded: Processing Analysis...]"), ("assistant", full_report)], report_path
|
232 |
|
233 |
except Exception as e:
|
234 |
raise gr.Error(f"Error: {str(e)}")
|
235 |
|
236 |
+
|
237 |
def create_ui(agent):
|
238 |
+
with gr.Blocks(title="Patient History Chat") as demo:
|
239 |
+
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True)
|
240 |
+
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
|
241 |
+
analyze_btn = gr.Button("🧠 Analyze Patient History")
|
242 |
+
report_output = gr.File(label="Download Report")
|
243 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
analyze_btn.click(
|
245 |
analyze,
|
246 |
+
inputs=[file_upload],
|
247 |
+
outputs=[chatbot, report_output]
|
248 |
)
|
249 |
+
|
250 |
return demo
|
251 |
|
252 |
+
|
253 |
if __name__ == "__main__":
|
254 |
try:
|
255 |
agent = init_agent()
|
|
|
262 |
)
|
263 |
except Exception as e:
|
264 |
print(f"Error: {str(e)}")
|
265 |
+
sys.exit(1)
|