CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
f260d4a verified
raw
history blame
13.4 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 32768 # Model's maximum sequence length
MAX_CHUNK_TOKENS = 8192 # Chunk size aligned with max_num_batched_tokens
MAX_NEW_TOKENS = 2048 # Maximum tokens for generation
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template overhead
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Estimate the number of tokens based on character length."""
return len(text) // 3.5 + 1 # Add 1 to avoid zero estimates
def extract_text_from_excel(file_path: str) -> str:
"""Extract text from all sheets in an Excel file."""
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
raise ValueError(f"Failed to extract text from Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
"""
Split text into chunks, ensuring each chunk is within token limits,
accounting for prompt overhead.
"""
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
if effective_max_tokens <= 0:
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max_tokens:
if current_chunk: # Save the current chunk if it's not empty
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
"""Build a prompt for analyzing a chunk of clinical data."""
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
"""Initialize the TxAgent with model and tool configurations."""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
"""Process the Excel file and generate a final report."""
messages = chatbot_state if chatbot_state else []
report_path = None
if file is None or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
return messages, report_path
try:
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
messages.append({"role": "assistant", "content": "⏳ Extracting and analyzing data..."})
# Extract text and split into chunks
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
chunk_responses = []
# Process each chunk
for i, chunk in enumerate(chunks):
messages.append({"role": "assistant", "content": f"πŸ” Analyzing chunk {i+1}/{len(chunks)}..."})
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
messages.append({"role": "assistant", "content": f"❌ Chunk {i+1} prompt too long ({prompt_tokens} tokens). Skipping..."})
continue
response = ""
try:
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error analyzing chunk {i+1}: {str(e)}"})
continue
chunk_responses.append(clean_response(response))
messages.append({"role": "assistant", "content": f"βœ… Chunk {i+1} analysis complete"})
if not chunk_responses:
messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."})
return messages, report_path
# Summarize chunk responses incrementally to avoid token limit
summary = ""
current_summary_tokens = 0
for i, response in enumerate(chunk_responses):
response_tokens = estimate_tokens(response)
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
# Summarize current summary
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
summary_response = ""
try:
for result in agent.run_gradio_chat(
message=summary_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
summary_response += result
elif hasattr(result, "content"):
summary_response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
summary_response += r.content
summary = clean_response(summary_response)
current_summary_tokens = estimate_tokens(summary)
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error summarizing intermediate results: {str(e)}"})
return messages, report_path
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
current_summary_tokens += response_tokens
# Final summarization
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
final_report_text = ""
try:
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_report_text += result
elif hasattr(result, "content"):
final_report_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_report_text += r.content
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"})
return messages, report_path
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(final_report_text)}"
messages[-1]["content"] = f"πŸ“Š Final Report:\n\n{clean_response(final_report_text)}"
# Save the report
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: report_{timestamp}.md"})
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
return messages, report_path
def create_ui(agent):
"""Create the Gradio UI for the patient history analysis tool."""
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("## πŸ₯ Patient History Analysis Tool")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Clinical Assistant",
show_copy_button=True,
height=600,
type="messages",
avatar_images=(
None,
"https://i.imgur.com/6wX7Zb4.png"
)
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"🧠 Analyze Patient History",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
# State to maintain chatbot messages
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
report_update = gr.update(visible=report_path is not None, value=report_path)
return messages, report_update, messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)