|
|
|
import sys, os, json, shutil, re, time, gc, hashlib |
|
import pandas as pd |
|
from datetime import datetime |
|
from typing import List, Tuple, Dict, Union |
|
import gradio as gr |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
|
|
MAX_MODEL_TOKENS = 131072 |
|
MAX_NEW_TOKENS = 4096 |
|
MAX_CHUNK_TOKENS = 8192 |
|
PROMPT_OVERHEAD = 300 |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(d, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
def estimate_tokens(text: str) -> int: |
|
return len(text) // 4 + 1 |
|
|
|
def clean_response(text: str) -> str: |
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
def extract_text_from_excel(path: str) -> str: |
|
all_text = [] |
|
xls = pd.ExcelFile(path) |
|
for sheet in xls.sheet_names: |
|
df = xls.parse(sheet).astype(str).fillna("") |
|
rows = df.apply(lambda row: " | ".join(row), axis=1) |
|
all_text += [f"[{sheet}] {line}" for line in rows] |
|
return "\n".join(all_text) |
|
|
|
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]: |
|
effective_limit = max_tokens - PROMPT_OVERHEAD |
|
chunks, current, current_tokens = [], [], 0 |
|
for line in text.split("\n"): |
|
tokens = estimate_tokens(line) |
|
if current_tokens + tokens > effective_limit: |
|
if current: |
|
chunks.append("\n".join(current)) |
|
current, current_tokens = [line], tokens |
|
else: |
|
current.append(line) |
|
current_tokens += tokens |
|
if current: |
|
chunks.append("\n".join(current)) |
|
return chunks |
|
|
|
def build_prompt(chunk: str) -> str: |
|
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning.""" |
|
|
|
def init_agent() -> TxAgent: |
|
tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(tool_path): |
|
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path) |
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100 |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
def analyze_serial(agent, chunks: List[str]) -> List[str]: |
|
results = [] |
|
for i, chunk in enumerate(chunks): |
|
prompt = build_prompt(chunk) |
|
if estimate_tokens(prompt) > MAX_MODEL_TOKENS: |
|
results.append(f"β Chunk {i+1} too long. Skipped.") |
|
continue |
|
response = "" |
|
try: |
|
for r in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_MODEL_TOKENS, |
|
call_agent=False, |
|
conversation=[] |
|
): |
|
if isinstance(r, str): |
|
response += r |
|
elif isinstance(r, list): |
|
for m in r: |
|
if hasattr(m, "content"): |
|
response += m.content |
|
elif hasattr(r, "content"): |
|
response += r.content |
|
gc.collect() |
|
results.append(clean_response(response)) |
|
except Exception as e: |
|
results.append(f"β Error in chunk {i+1}: {str(e)}") |
|
return results |
|
|
|
def generate_final_summary(agent, combined: str) -> str: |
|
final_prompt = f"""Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points.""" |
|
full_report = "" |
|
for r in agent.run_gradio_chat( |
|
message=final_prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_MODEL_TOKENS, |
|
call_agent=False, |
|
conversation=[] |
|
): |
|
if isinstance(r, str): |
|
full_report += r |
|
elif isinstance(r, list): |
|
for m in r: |
|
if hasattr(m, "content"): |
|
full_report += m.content |
|
elif hasattr(r, "content"): |
|
full_report += r.content |
|
return clean_response(full_report) |
|
|
|
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: |
|
if not file or not hasattr(file, "name"): |
|
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file."}) |
|
return messages, None |
|
|
|
messages.append({"role": "user", "content": f"π Processing file: {os.path.basename(file.name)}"}) |
|
try: |
|
extracted = extract_text_from_excel(file.name) |
|
chunks = split_text(extracted) |
|
messages.append({"role": "assistant", "content": f"π Split into {len(chunks)} chunks. Analyzing..."}) |
|
|
|
chunk_results = analyze_serial(agent, chunks) |
|
valid = [res for res in chunk_results if not res.startswith("β")] |
|
|
|
if not valid: |
|
messages.append({"role": "assistant", "content": "β No valid chunk outputs."}) |
|
return messages, None |
|
|
|
summary = generate_final_summary(agent, "\n\n".join(valid)) |
|
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") |
|
with open(report_path, 'w', encoding='utf-8') as f: |
|
f.write(f"# π§ Final Medical Report\n\n{summary}") |
|
|
|
messages.append({"role": "assistant", "content": f"π Final Report:\n\n{summary}"}) |
|
messages.append({"role": "assistant", "content": f"β
Report saved: {os.path.basename(report_path)}"}) |
|
return messages, report_path |
|
|
|
except Exception as e: |
|
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"}) |
|
return messages, None |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(css=""" |
|
html, body, .gradio-container { |
|
background-color: #0e1621; |
|
color: #e0e0e0; |
|
font-family: 'Inter', sans-serif; |
|
} |
|
h2, h3, h4 { |
|
color: #89b4fa; |
|
font-weight: 600; |
|
} |
|
.gr-button.primary { |
|
background-color: #1e88e5; |
|
color: white; |
|
font-weight: bold; |
|
border-radius: 8px; |
|
padding: 0.65em 1.2em; |
|
} |
|
.gr-button.primary:hover { |
|
background-color: #1565c0; |
|
} |
|
.gr-chatbot, .gr-markdown, .gr-file-upload { |
|
border-radius: 12px; |
|
background-color: #1b2533; |
|
border: 1px solid #2a2f45; |
|
} |
|
.gr-chatbot .message { |
|
font-size: 15px; |
|
line-height: 1.6; |
|
} |
|
.gr-file-upload .file-name { |
|
font-size: 14px; |
|
} |
|
""") as demo: |
|
gr.Markdown(""" |
|
<h2>π CPS: Clinical Patient Support System</h2> |
|
<p>CPS Assistant helps you analyze and summarize unstructured medical files using AI.</p> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages") |
|
with gr.Column(scale=1): |
|
upload = gr.File(label="Upload Medical File", file_types=[".xlsx"]) |
|
analyze = gr.Button("π§ Analyze", variant="primary") |
|
download = gr.File(label="Download Report", visible=False, interactive=False) |
|
|
|
state = gr.State(value=[]) |
|
|
|
def handle_analysis(file, chat): |
|
messages, report_path = process_report(agent, file, chat) |
|
return messages, gr.update(visible=bool(report_path), value=report_path), messages |
|
|
|
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state]) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
agent = init_agent() |
|
ui = create_ui(agent) |
|
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False) |
|
except Exception as err: |
|
print(f"Startup failed: {err}") |
|
sys.exit(1) |
|
|