CPS-Test-Mobile / ui /ui_core.py
Ali2206's picture
Update ui/ui_core.py
3e913cb verified
raw
history blame
8.91 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def clean_final_response(text: str) -> str:
cleaned = text.replace("[TOOL_CALLS]", "").strip()
responses = cleaned.split("[Final Analysis]")
if len(responses) <= 1:
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>"
panels = []
for i, section in enumerate(responses[1:], 1):
final = section.strip()
panels.append(
f"<div style='background:#2B2B2B;color:#E0E0E0;border-radius:12px;margin-bottom:1em;border:1px solid #888;'>"
f"<div style='font-size:1.1em;font-weight:bold;padding:0.75em;background:#3A3A3A;color:#fff;border-radius:12px 12px 0 0;'>🧠 Final Analysis #{i}</div>"
f"<div style='padding:1em;line-height:1.6;'>{final.replace(chr(10), '<br>')}</div>"
f"</div>"
)
return "".join(panels)
def file_hash(path):
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
cache_dir = os.path.join("cache")
os.makedirs(cache_dir, exist_ok=True)
h = file_hash(file_path)
cache_path = os.path.join(cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
elif file_type == "pdf":
with pdfplumber.open(file_path) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
open(cache_path, "w", encoding="utf-8").write(result)
return result
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
if df is None or df.empty:
return json.dumps({"warning": f"No data extracted from: {file_path}"})
df = df.fillna("")
content = df.astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
open(cache_path, "w", encoding="utf-8").write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
def chunk_text(text: str, max_tokens: int = 6000) -> List[str]:
chunks = []
words = text.split()
chunk = []
token_count = 0
for word in words:
token_count += len(word) // 4 + 1
if token_count > max_tokens:
chunks.append(" ".join(chunk))
chunk = [word]
token_count = len(word) // 4 + 1
else:
chunk.append(word)
if chunk:
chunks.append(" ".join(chunk))
return chunks
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '[Final Analysis]' where you summarize key findings the doctor may have missed."
)
try:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
for file in uploaded_files:
if not hasattr(file, 'name'):
continue
path = file.name
ext = path.split(".")[-1].lower()
json_text = convert_file_to_json(path, ext)
extracted_text += sanitize_utf8(json_text) + "\n"
chunks = chunk_text(extracted_text.strip())
def process_chunk(i, chunk):
if len(chunk.split()) > 8192:
return f"[Chunk {i+1}] ⚠️ Skipped: input exceeds model limit."
chunked_prompt = (
f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n"
f"--- End of Chunk ---\n\nNow begin your analysis:"
)
try:
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
result = ""
for update in generator:
if update is None:
continue
if isinstance(update, str):
result += update
elif isinstance(update, list):
for msg in update:
if hasattr(msg, 'content'):
result += msg.content
return result if result.strip() else f"[Chunk {i+1}] ⚠️ No response received."
except Exception as err:
print(f"[Error in chunk {i+1}] {err}")
return f"[Chunk {i+1}] ❌ Failed to process due to error."
results = [process_chunk(i, chunk) for i, chunk in enumerate(chunks)]
full_response = "\n\n".join(results)
full_response = clean_final_response(full_response.strip())
history[-1] = {"role": "assistant", "content": full_response}
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo