|
import sys |
|
import os |
|
import pandas as pd |
|
import gradio as gr |
|
from typing import List, Tuple, Dict, Any, Union |
|
import shutil |
|
import re |
|
from datetime import datetime |
|
import time |
|
import asyncio |
|
import logging |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MAX_MODEL_TOKENS = 131072 |
|
MAX_CHUNK_TOKENS = 32768 |
|
MAX_NEW_TOKENS = 512 |
|
PROMPT_OVERHEAD = 500 |
|
MAX_CONCURRENT = 4 |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger(__name__) |
|
|
|
def clean_response(text: str) -> str: |
|
try: |
|
text = text.encode('utf-8', 'surrogatepass').decode('utf-8') |
|
except UnicodeError: |
|
text = text.encode('utf-8', 'replace').decode('utf-8') |
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
def estimate_tokens(text: str) -> int: |
|
return len(text) // 3.5 + 1 |
|
|
|
def extract_text_from_excel(file_path: str) -> str: |
|
all_text = [] |
|
try: |
|
xls = pd.ExcelFile(file_path) |
|
for sheet_name in xls.sheet_names: |
|
df = xls.parse(sheet_name) |
|
df = df.astype(str).fillna("") |
|
rows = df.apply(lambda row: " | ".join(row), axis=1) |
|
sheet_text = [f"[{sheet_name}] {line}" for line in rows] |
|
all_text.extend(sheet_text) |
|
except Exception as e: |
|
logger.error(f"Error extracting Excel: {str(e)}") |
|
raise ValueError(f"Failed to process Excel file: {str(e)}") |
|
return "\n".join(all_text) |
|
|
|
def split_text_into_chunks(text: str) -> List[str]: |
|
"""Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD""" |
|
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD |
|
if effective_max <= 0: |
|
raise ValueError("Effective max tokens must be positive") |
|
|
|
lines = text.split("\n") |
|
chunks = [] |
|
current_chunk = [] |
|
current_tokens = 0 |
|
|
|
for line in lines: |
|
line_tokens = estimate_tokens(line) |
|
if current_tokens + line_tokens > effective_max: |
|
if current_chunk: |
|
chunks.append("\n".join(current_chunk)) |
|
current_chunk = [line] |
|
current_tokens = line_tokens |
|
else: |
|
current_chunk.append(line) |
|
current_tokens += line_tokens |
|
|
|
if current_chunk: |
|
chunks.append("\n".join(current_chunk)) |
|
|
|
logger.info(f"Split text into {len(chunks)} chunks") |
|
return chunks |
|
|
|
def build_prompt_from_text(chunk: str) -> str: |
|
return f""" |
|
### Unstructured Clinical Records |
|
|
|
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets. |
|
|
|
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps. |
|
|
|
Here is the extracted content chunk: |
|
|
|
{chunk} |
|
|
|
Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tokens): |
|
- Diagnostic Patterns |
|
- Medication Issues |
|
- Missed Opportunities |
|
- Inconsistencies |
|
- Follow-up Recommendations |
|
""" |
|
|
|
def init_agent(): |
|
"""Initialize TxAgent with conservative settings to avoid vLLM issues""" |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
|
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[] |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
def process_chunk_sync(agent, chunk: str, chunk_idx: int) -> Tuple[int, str]: |
|
"""Synchronous wrapper for chunk processing""" |
|
try: |
|
prompt = build_prompt_from_text(chunk) |
|
prompt_tokens = estimate_tokens(prompt) |
|
|
|
if prompt_tokens > MAX_MODEL_TOKENS: |
|
logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)") |
|
return chunk_idx, "" |
|
|
|
response = "" |
|
for result in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_MODEL_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, str): |
|
response += result |
|
elif hasattr(result, "content"): |
|
response += result.content |
|
elif isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, "content"): |
|
response += r.content |
|
|
|
return chunk_idx, clean_response(response) |
|
except Exception as e: |
|
logger.error(f"Error processing chunk {chunk_idx}: {str(e)}") |
|
return chunk_idx, "" |
|
|
|
async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]: |
|
"""Process the file with improved error handling and vLLM stability""" |
|
messages = [] |
|
report_path = None |
|
|
|
try: |
|
|
|
messages.append({"role": "user", "content": f"Processing file: {os.path.basename(file_path)}"}) |
|
messages.append({"role": "assistant", "content": "β³ Extracting data from Excel..."}) |
|
yield messages, None |
|
|
|
|
|
start_time = time.time() |
|
text = extract_text_from_excel(file_path) |
|
chunks = split_text_into_chunks(text) |
|
messages.append({"role": "assistant", "content": f"β
Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"}) |
|
yield messages, None |
|
|
|
|
|
chunk_responses = [] |
|
for idx, chunk in enumerate(chunks): |
|
messages.append({"role": "assistant", "content": f"π Processing chunk {idx+1}/{len(chunks)}..."}) |
|
yield messages, None |
|
|
|
_, response = process_chunk_sync(agent, chunk, idx) |
|
chunk_responses.append(response) |
|
|
|
messages.append({"role": "assistant", "content": f"β
Chunk {idx+1} processed"}) |
|
yield messages, None |
|
|
|
|
|
combined = "\n\n".join([r for r in chunk_responses if r]) |
|
messages.append({"role": "assistant", "content": "π Generating final report..."}) |
|
yield messages, None |
|
|
|
final_response = "" |
|
for result in agent.run_gradio_chat( |
|
message=f"Summarize these clinical findings:\n\n{combined}", |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS*2, |
|
max_token=MAX_MODEL_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, str): |
|
final_response += result |
|
elif hasattr(result, "content"): |
|
final_response += result.content |
|
elif isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, "content"): |
|
final_response += r.content |
|
|
|
messages[-1]["content"] = f"π Generating final report...\n\n{clean_response(final_response)}" |
|
yield messages, None |
|
|
|
|
|
final_report = f"# Final Clinical Report\n\n{clean_response(final_response)}" |
|
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') |
|
report_path = os.path.join(report_dir, f"report_{timestamp}.md") |
|
|
|
with open(report_path, 'w') as f: |
|
f.write(final_report) |
|
|
|
messages.append({"role": "assistant", "content": f"β
Report saved: report_{timestamp}.md"}) |
|
yield messages, report_path |
|
|
|
except Exception as e: |
|
logger.error(f"Processing failed: {str(e)}") |
|
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"}) |
|
yield messages, None |
|
|
|
def create_ui(agent: TxAgent): |
|
"""Create the Gradio interface with simplified interaction""" |
|
with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo: |
|
gr.Markdown("## π₯ Clinical Data Analysis (TxAgent)") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot( |
|
label="Analysis Progress", |
|
show_copy_button=True, |
|
height=600, |
|
type="messages" |
|
) |
|
with gr.Column(scale=1): |
|
file_input = gr.File( |
|
label="Upload Excel File", |
|
file_types=[".xlsx"], |
|
height=100 |
|
) |
|
analyze_btn = gr.Button( |
|
"π§ Analyze Data", |
|
variant="primary" |
|
) |
|
report_output = gr.File( |
|
label="Download Report", |
|
visible=False |
|
) |
|
|
|
analyze_btn.click( |
|
fn=lambda file: process_file(agent, file.name) if file else ([{"role": "assistant", "content": "β Please upload a file"}], None), |
|
inputs=[file_input], |
|
outputs=[chatbot, report_output], |
|
concurrency_limit=1 |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
|
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
|
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False, |
|
max_threads=4 |
|
) |
|
except Exception as e: |
|
logger.error(f"Application failed: {str(e)}") |
|
sys.exit(1) |