import streamlit as st import pandas as pd from transformers import AutoTokenizer from transformers import ( TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, ) from transformers import pipeline st.title("Toxic Tweet Classifier") demo = """Your words are like poison. They seep into my mind and make me feel worthless.""" text = st.text_area("Input text", demo, height=275) submit = False model_name = "" with st.container(): model_name = st.selectbox( "Select Model", ("RobCaamano/toxicity",), ) submit = st.button("Submit", type="primary") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True ) input = tokenizer(text, return_tensors="tf") if submit: results = dict(d.values() for d in clf(text)[0]) classes = {k: results[k] for k in results.keys() if not k == "toxic"} max_class = max(classes, key=classes.get) probability = classes[max_class] if results['toxic'] >= 0.5: result_df = pd.DataFrame({ 'Toxic': ['Yes'], 'Toxicity Class': [max_class], 'Probability': [probability] }) else: result_df = pd.DataFrame({ 'Toxic': ['No'], 'Toxicity Class': 'This text is not toxic', }) st.table(result_df) expander = st.expander("View Raw output") expander.write(results)