import streamlit as st import pandas as pd from transformers import AutoTokenizer from transformers import ( TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, ) from transformers import pipeline st.title("Detecting Toxic Tweets") demo = """Your words are like poison. They seep into my mind and make me feel worthless.""" text = st.text_area("Input text", demo, height=250) # Add a drop-down menu for model selection model_options = { "DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english", "Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert", } selected_model = st.selectbox("Select Model", options=list(model_options.keys())) mod_name = model_options[selected_model] tokenizer = AutoTokenizer.from_pretrained(mod_name) model = AutoModelForSequenceClassification.from_pretrained(mod_name) # Update the id2label mapping for the fine-tuned model if selected_model == "Fine-tuned Toxicity Model": toxicity_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] model.config.id2label = {i: toxicity_classes[i] for i in range(model.config.num_labels)} clf = pipeline( "text-classification", model=model, tokenizer=tokenizer, return_all_scores=True ) input = tokenizer(text, return_tensors="tf") if st.button("Submit", type="primary"): results = clf(text)[0] max_class = max(results, key=lambda x: x["score"]) tweet_portion = text[:50] + "..." if len(text) > 50 else text # Create and display the table if selected_model == "Fine-tuned Toxicity Model": column_name = "Highest Toxicity Class" else: column_name = "Prediction" df = pd.DataFrame( { "Tweet (portion)": [tweet_portion], column_name: [max_class["label"]], "Probability": [max_class["score"]], } ) st.table(df)