Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import AutoTokenizer, pipeline | |
from transformers import ( | |
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, | |
) | |
st.title("Toxic Tweet Classifier") | |
demo = """Your words are like poison. They seep into my mind and make me feel worthless.""" | |
text = st.text_area("Input text", demo, height=275) | |
submit = False | |
model_name = "" | |
with st.container(): | |
model_name = st.selectbox( | |
"Select Model", | |
("RobCaamano/toxicity", "distilbert-base-uncased-finetuned-sst-2-english"), | |
) | |
submit = st.button("Submit", type="primary") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
clf = pipeline( | |
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True | |
) | |
input = tokenizer(text, return_tensors="tf") | |
if submit: | |
results = dict(d.values() for d in clf(text)[0]) | |
if model_name == "RobCaamano/toxicity": | |
classes = {k: results[k] for k in results.keys() if not k == "toxic"} | |
max_class = max(classes, key=classes.get) | |
probability = classes[max_class] | |
if results['toxic'] >= 0.5: | |
result_df = pd.DataFrame({ | |
'Toxic': ['Yes'], | |
'Toxicity Class': [max_class], | |
'Probability': [probability] | |
}) | |
else: | |
result_df = pd.DataFrame({ | |
'Toxic': ['No'], | |
'Toxicity Class': 'This text is not toxic', | |
}) | |
elif model_name == "distilbert-base-uncased-finetuned-sst-2-english": | |
result = max(results, key=results.get) | |
probability = results[result] | |
result_df = pd.DataFrame({ | |
'Result': [result], | |
'Probability': [probability], | |
}) | |
st.table(result_df) | |
expander = st.expander("View Raw output") | |
expander.write(results) | |