Rob Caamano
Update app.py
490091e unverified
raw
history blame
2.27 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, pipeline
from transformers import (
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
)
st.title("Classifier")
demo_options = {
"non-toxic": "Had a wonderful weekend at the park. Enjoyed the beautiful weather!",
"toxic": "WIP",
"severe_toxic": "WIP",
"obscene": "I don't give a fuck about your opinion",
"threat": "WIP",
"insult": "Are you always this incompetent?",
"identity_hate": "WIP",
}
selected_demo = st.selectbox("Demos", options=list(demo_options.keys()))
text = st.text_area("Input text", demo_options[selected_demo], height=250)
submit = False
model_name = ""
with st.container():
model_name = st.selectbox(
"Select Model",
("RobCaamano/toxicity", "distilbert-base-uncased-finetuned-sst-2-english"),
)
submit = st.button("Submit", type="primary")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
clf = pipeline(
"sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True
)
input = tokenizer(text, return_tensors="tf")
if submit:
results = dict(d.values() for d in clf(text)[0])
if model_name == "RobCaamano/toxicity":
classes = {k: results[k] for k in results.keys() if not k == "toxic"}
max_class = max(classes, key=classes.get)
probability = classes[max_class]
if results['toxic'] >= 0.5:
result_df = pd.DataFrame({
'Toxic': 'Yes',
'Toxicity Class': [max_class],
'Probability': [probability]
}, index=[0])
else:
result_df = pd.DataFrame({
'Toxic': 'No',
'Toxicity Class': 'This text is not toxic',
}, index=[0])
elif model_name == "distilbert-base-uncased-finetuned-sst-2-english":
result = max(results, key=results.get)
probability = results[result]
result_df = pd.DataFrame({
'Result': [result],
'Probability': [probability],
}, index=[0])
st.table(result_df)
expander = st.expander("View Raw output")
expander.write(results)