Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import AutoTokenizer | |
from transformers import ( | |
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, | |
) | |
from transformers import pipeline | |
st.title("Detecting Toxic Tweets") | |
demo = """Your words are like poison. They seep into my mind and make me feel worthless""" | |
text = st.text_area("Input text", demo, height=250) | |
# Add a drop-down menu for model selection | |
model_options = { | |
"DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english", | |
"Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert", | |
} | |
selected_model = st.selectbox("Select Model", options=list(model_options.keys())) | |
mod_name = model_options[selected_model] | |
tokenizer = AutoTokenizer.from_pretrained(mod_name) | |
model = AutoModelForSequenceClassification.from_pretrained(mod_name) | |
clf = pipeline( | |
"text-classification", model=model, tokenizer=tokenizer, return_all_scores=True | |
) | |
input = tokenizer(text, return_tensors="tf") | |
if st.button("Submit", type="primary"): | |
results = clf(text)[0] | |
max_class = max(results, key=lambda x: x["score"]) | |
tweet_portion = text[:50] + "..." if len(text) > 50 else text | |
# Create and display the table | |
df = pd.DataFrame( | |
{ | |
"Tweet (portion)": [tweet_portion], | |
"Highest Toxicity Class": [max_class["label"]], | |
"Probability": [max_class["score"]], | |
} | |
) | |
st.table(df) | |