import tempfile from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer import gradio as gr from fastapi import FastAPI, UploadFile, File, Request, HTTPException import os import json from typing import Optional, Dict, List import torch # Initialize models model_name = "cardiffnlp/twitter-roberta-base-emotion" tokenizer = RobertaTokenizer.from_pretrained(model_name) model = RobertaForSequenceClassification.from_pretrained(model_name) emotion_analysis = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None) # Replaced return_all_scores with top_k app = FastAPI() def save_upload_file(upload_file: UploadFile) -> str: """Save uploaded file to temporary location""" try: suffix = os.path.splitext(upload_file.filename)[1] with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp: content = upload_file.file.read() if suffix == '.json': content = content.decode('utf-8') tmp.write(content if isinstance(content, bytes) else content.encode()) return tmp.name finally: upload_file.file.close() @app.post("/api/predict") async def predict_from_upload(file: UploadFile = File(...)): """API endpoint for file uploads""" try: temp_path = save_upload_file(file) if temp_path.endswith('.json'): with open(temp_path, 'r') as f: data = json.load(f) text = data.get('description', '') else: with open(temp_path, 'r') as f: text = f.read() if not text.strip(): raise HTTPException(status_code=400, detail="No text content found") result = emotion_analysis(text) emotions = [{'label': e['label'], 'score': float(e['score'])} for e in sorted(result[0], key=lambda x: x['score'], reverse=True)] os.unlink(temp_path) return {"success": True, "results": emotions} except Exception as e: if 'temp_path' in locals() and os.path.exists(temp_path): os.unlink(temp_path) raise HTTPException(status_code=500, detail=str(e)) def gradio_predict(input_data, file_data=None): """Handle both direct text and file uploads""" try: if file_data is not None: temp_path = save_upload_file(file_data) if temp_path.endswith('.json'): with open(temp_path, 'r') as f: data = json.load(f) text = data.get('description', '') else: with open(temp_path, 'r') as f: text = f.read() os.unlink(temp_path) else: text = input_data if not text.strip(): return {"error": "No text content found"} result = emotion_analysis(text) return { "emotions": [ {e['label']: float(e['score'])} for e in sorted(result[0], key=lambda x: x['score'], reverse=True) ] } except Exception as e: return {"error": str(e)} # Simplified Gradio interface without examples with gr.Blocks() as demo: gr.Markdown("# Text Emotion Analysis") with gr.Row(): with gr.Column(): text_input = gr.Textbox(label="Enter text directly", lines=5) file_input = gr.File(label="Or upload file", file_types=[".txt", ".json"]) submit_btn = gr.Button("Analyze") with gr.Column(): output = gr.JSON(label="Results") submit_btn.click( fn=gradio_predict, inputs=[text_input, file_input], outputs=output, api_name="predict" ) app = gr.mount_gradio_app(app, demo, path="/") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)