Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,72 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import numpy as np
|
4 |
-
import librosa
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
|
8 |
-
MODEL_NAME = "openai/whisper-
|
9 |
-
BATCH_SIZE = 8
|
10 |
-
# device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
-
|
12 |
-
pipe = pipeline(
|
13 |
-
task="automatic-speech-recognition",
|
14 |
-
model=MODEL_NAME,
|
15 |
-
chunk_length_s=30,
|
16 |
-
# device=device,
|
17 |
-
)
|
18 |
-
|
19 |
-
# eng_classifier = pipeline("text-classification", model="Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
20 |
-
|
21 |
-
def format_output_to_list(data):
|
22 |
-
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
23 |
-
return formatted_list
|
24 |
-
|
25 |
-
def transcribe(inputs, task):
|
26 |
-
if inputs is None:
|
27 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
28 |
-
|
29 |
-
output = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps="word", generate_kwargs={"task": task})
|
30 |
-
text = output['text']
|
31 |
-
timestamps = format_output_to_list(output['chunks'])
|
32 |
-
return [text, timestamps]
|
33 |
-
|
34 |
-
examples = [
|
35 |
-
["arabic_english_audios/audios/arabic_audio_1.wav"],
|
36 |
-
["arabic_english_audios/audios/arabic_audio_2.wav"],
|
37 |
-
["arabic_english_audios/audios/arabic_audio_3.wav"],
|
38 |
-
["arabic_english_audios/audios/arabic_audio_4.wav"],
|
39 |
-
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"],
|
40 |
-
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"],
|
41 |
-
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"],
|
42 |
-
["arabic_english_audios/audios/english_audio_1.wav"],
|
43 |
-
["arabic_english_audios/audios/english_audio_2.mp3"],
|
44 |
-
["arabic_english_audios/audios/english_audio_3.mp3"],
|
45 |
-
["arabic_english_audios/audios/english_audio_4.mp3"],
|
46 |
-
["arabic_english_audios/audios/english_audio_5.mp3"],
|
47 |
-
["arabic_english_audios/audios/english_audio_6.wav"]
|
48 |
-
]
|
49 |
-
|
50 |
-
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
51 |
-
gr.HTML("<h1 style='text-align: center;'>Transcribe Audio with Timestamps using whisper-large-v3</h1>")
|
52 |
-
gr.Markdown("")
|
53 |
-
with gr.Row():
|
54 |
-
with gr.Column():
|
55 |
-
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
56 |
-
task = gr.Radio(["transcribe", "translate"], label="Task")
|
57 |
-
with gr.Row():
|
58 |
-
clear_button = gr.ClearButton(value="Clear")
|
59 |
-
submit_button = gr.Button("Submit", variant="primary", )
|
60 |
-
|
61 |
-
with gr.Column():
|
62 |
-
transcript_output = gr.Text(label="Transcript")
|
63 |
-
timestamp_output = gr.Text(label="Timestamp")
|
64 |
-
|
65 |
-
examples = gr.Examples(examples, inputs=audio_input, outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
66 |
-
|
67 |
-
submit_button.click(fn=transcribe, inputs=audio_input, outputs=[transcript_output, timestamp_output])
|
68 |
-
clear_button.add([audio_input, transcript_output, timestamp_output])
|
69 |
-
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
9 |
+
BATCH_SIZE = 8
|
10 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
pipe = pipeline(
|
13 |
+
task="automatic-speech-recognition",
|
14 |
+
model=MODEL_NAME,
|
15 |
+
chunk_length_s=30,
|
16 |
+
# device=device,
|
17 |
+
)
|
18 |
+
|
19 |
+
# eng_classifier = pipeline("text-classification", model="Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
20 |
+
|
21 |
+
def format_output_to_list(data):
|
22 |
+
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
23 |
+
return formatted_list
|
24 |
+
|
25 |
+
def transcribe(inputs, task):
|
26 |
+
if inputs is None:
|
27 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
28 |
+
|
29 |
+
output = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps="word", generate_kwargs={"task": task})
|
30 |
+
text = output['text']
|
31 |
+
timestamps = format_output_to_list(output['chunks'])
|
32 |
+
return [text, timestamps]
|
33 |
+
|
34 |
+
examples = [
|
35 |
+
["arabic_english_audios/audios/arabic_audio_1.wav"],
|
36 |
+
["arabic_english_audios/audios/arabic_audio_2.wav"],
|
37 |
+
["arabic_english_audios/audios/arabic_audio_3.wav"],
|
38 |
+
["arabic_english_audios/audios/arabic_audio_4.wav"],
|
39 |
+
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"],
|
40 |
+
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"],
|
41 |
+
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"],
|
42 |
+
["arabic_english_audios/audios/english_audio_1.wav"],
|
43 |
+
["arabic_english_audios/audios/english_audio_2.mp3"],
|
44 |
+
["arabic_english_audios/audios/english_audio_3.mp3"],
|
45 |
+
["arabic_english_audios/audios/english_audio_4.mp3"],
|
46 |
+
["arabic_english_audios/audios/english_audio_5.mp3"],
|
47 |
+
["arabic_english_audios/audios/english_audio_6.wav"]
|
48 |
+
]
|
49 |
+
|
50 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
51 |
+
gr.HTML("<h1 style='text-align: center;'>Transcribe Audio with Timestamps using whisper-large-v3</h1>")
|
52 |
+
gr.Markdown("")
|
53 |
+
with gr.Row():
|
54 |
+
with gr.Column():
|
55 |
+
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
56 |
+
task = gr.Radio(["transcribe", "translate"], label="Task")
|
57 |
+
with gr.Row():
|
58 |
+
clear_button = gr.ClearButton(value="Clear")
|
59 |
+
submit_button = gr.Button("Submit", variant="primary", )
|
60 |
+
|
61 |
+
with gr.Column():
|
62 |
+
transcript_output = gr.Text(label="Transcript")
|
63 |
+
timestamp_output = gr.Text(label="Timestamp")
|
64 |
+
|
65 |
+
examples = gr.Examples(examples, inputs=audio_input, outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
66 |
+
|
67 |
+
submit_button.click(fn=transcribe, inputs=audio_input, outputs=[transcript_output, timestamp_output])
|
68 |
+
clear_button.add([audio_input, transcript_output, timestamp_output])
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.launch()
|