Ritesh-hf's picture
Update app.py
078e192 verified
raw
history blame
7.97 kB
import gradio as gr
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import numpy as np
import pandas as pd
import re
from pydub import AudioSegment
from pydub.generators import Sine
import io
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=8,
device=device,
)
arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
def clean_english_word(word):
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', word)
return cleaned_text.lower()
def clean_arabic_word(word):
pattern = r'[^\u0600-\u06FF]'
cleaned_word = re.sub(pattern, '', word)
return cleaned_word
def classifier(word_list_with_timestamp, language):
foul_words = []
negative_timestamps = []
if language == "English":
list_to_search = set(english_bad_Words["words"])
for item in word_list_with_timestamp:
word = clean_english_word(item['text'])
if word.lower() in list_to_search:
foul_words.append(word)
negative_timestamps.append(item['timestamp'])
break
else:
list_to_search = list(arabic_bad_Words["words"])
for item in word_list_with_timestamp:
word = clean_arabic_word(item['text'])
for word_in_list in list_to_search:
if word_in_list == word:
foul_words.append(word)
negative_timestamps.append(item['timestamp'])
break
return [foul_words, negative_timestamps]
def generate_bleep(duration_ms, frequency=1000):
sine_wave = Sine(frequency)
bleep = sine_wave.to_audio_segment(duration=duration_ms)
return bleep
def mute_audio_range(audio_filepath, ranges, bleep_frequency=800):
audio = AudioSegment.from_file(audio_filepath)
for range in ranges:
start_time = range[0] - 0.1
end_time = range[-1] + 0.1
start_ms = start_time * 1000 # pydub works with milliseconds
end_ms = end_time * 1000
duration_ms = end_ms - start_ms
# Generate the bleep sound
bleep_sound = generate_bleep(duration_ms, bleep_frequency)
# Combine the original audio with the bleep sound
audio = audio[:start_ms] + bleep_sound + audio[end_ms:]
return audio
def format_output_to_list(data):
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
return formatted_list
def transcribe(input_audio, audio_language, task, timestamp_type):
if input_audio is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
if timestamp_type == "sentence":
timestamp_type = True
else:
timestamp_type = "word"
output = pipe(input_audio, return_timestamps=timestamp_type, generate_kwargs={"task": task})
text = output['text']
timestamps = format_output_to_list(output['chunks'])
foul_words, negative_timestamps = classifier(output['chunks'], audio_language)
foul_words = ", ".join(foul_words)
audio_output = mute_audio_range(input_audio, negative_timestamps)
# Save the output audio to a BytesIO object
output_buffer = io.BytesIO()
audio_output.export(output_buffer, format="wav")
output_buffer.seek(0)
# Read the audio data from the BytesIO buffer
sample_rate = audio_output.frame_rate
audio_data = np.frombuffer(output_buffer.read(), dtype=np.int16)
return [text, timestamps, foul_words, (sample_rate, audio_data)]
examples = [
#["arabic_english_audios/audios/arabic_audio_1.mp3", 'Arabic', 'transcribe', 'word'],
#["arabic_english_audios/audios/arabic_audio_2.flac", 'Arabic', 'transcribe', 'word'],
#["arabic_english_audios/audios/arabic_audio_3.flac", 'Arabic', 'transcribe', 'word'],
#["arabic_english_audios/audios/arabic_audio_31.mp3", 'Arabic', 'transcribe', 'word'],
#["arabic_english_audios/audios/arabic_audio_32.mp3", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_31.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_32.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_33.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_34.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_35.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_36.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_37.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_38.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_39.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_40.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_41.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_42.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_43.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_44.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_45.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_46.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_48.mp3", 'English', 'transcribe', 'word'],
# ["arabic_english_audios/audios/english_audio_49.mp3", 'English', 'transcribe', 'word'],
]
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
# gr.Markdown("")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
task = gr.Radio(["transcribe", "translate"], label="Task")
timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
with gr.Row():
clear_button = gr.ClearButton(value="Clear")
submit_button = gr.Button("Submit", variant="primary", )
with gr.Column():
transcript_output = gr.Text(label="Transcript")
timestamp_output = gr.Text(label="Timestamps")
foul_words = gr.Text(label="Foul Words")
output_audio = gr.Audio(label="Output Audio", type="numpy")
examples = gr.Examples(examples, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words, output_audio], fn=transcribe, examples_per_page=20)
submit_button.click(fn=transcribe, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words, output_audio])
clear_button.add([audio_input, audio_language, task, timestamp_type, transcript_output, timestamp_output, foul_words, output_audio])
if __name__ == "__main__":
demo.launch(cache_examples=False)